

# **Annual Review 2022/23**

# **Redirect Recycling Wetherill Park**

24 Davis Road, Wetherill Park NSW

Redirect Recycling

19 December 2023

**Revision History** 

| Rev | Revision   | Author /      | Details    | Authorised      |           |
|-----|------------|---------------|------------|-----------------|-----------|
| No. | Date       | Position      |            | Name / Position | Signature |
| 1   | 19/12/2023 | James Sutton  | For        | James Sutton    |           |
|     |            | Environmental | submission | Environmental   | Sulto     |
|     |            | Manager       | to DPE     | Manager         | 0 1 0 10  |



#### **Table of Contents**

| 1  |       | Introduction                                                 | 4    |
|----|-------|--------------------------------------------------------------|------|
|    | 1.1   | Scope                                                        | 4    |
|    | 1.2   | Background                                                   | 4    |
|    | 1.3   | Consent                                                      |      |
|    | 1.4   | Annual Review Requirements                                   |      |
|    | 1.5   | Environment Protection Licence                               |      |
|    | 1.6   | Water Licences                                               |      |
|    | 1.7   | Trade Waste Licence                                          |      |
|    | 1.8   | Environmental Management Plans                               |      |
|    | 1.9   | Contacts                                                     |      |
| _  | 1.10  | Actions Required from Previous Annual Review                 |      |
| 2  |       | Operations during the Reporting Period                       |      |
|    | 2.1   | Production                                                   |      |
|    | 2.2   | Facility Improvements                                        |      |
| _  | 2.3   | Site Activities                                              |      |
| 3  |       | Waste Management                                             |      |
|    | 3.1   | Solid Waste                                                  |      |
|    | 3.2   | Trade Waste                                                  |      |
| 4  |       | Environmental Monitoring and Performance                     |      |
|    | 4.1   | Environmental Management System                              |      |
|    | 4.2   | Air Quality                                                  |      |
|    | 4.3   | Surface Water                                                |      |
|    | 4.4   | Groundwater                                                  |      |
| _  | 4.5   | Noise                                                        |      |
| 5  |       | Community Relations                                          |      |
|    | 5.1   | Environmental Complaints                                     |      |
|    | 5.2   | Community Liaison                                            |      |
| 6  |       | Independent Audit                                            |      |
| 7  |       | Environmental Incidents & Non-compliances                    | 23   |
|    | 7.1 l | ncidents 23                                                  |      |
|    | 7.2 1 | Non-conformances                                             |      |
| 8  |       | <b>Activities Proposed for the next Annual Review Period</b> | d 24 |
| Α  | PPE   | NDICIES                                                      |      |
|    |       | ndix A – Surface Water Monitoring Report                     |      |
|    |       | ndix B – Groundwater Monitoring Result                       |      |
|    |       | <u> </u>                                                     |      |
| A  | pper  | ndix C – Community Complaints                                | 29   |
| Fi | gure  | 1 Regional Context                                           | 5    |
| Fi | gure  | 2 SSD 7401 Approved Development Area                         | 11   |
|    | _     | 3 Groundwater Monitoring Locations                           |      |



#### **Annual Review Title Block**

| Name of operation                                        | Redirect Recycling |
|----------------------------------------------------------|--------------------|
| Name of operator                                         | Redirect Recycling |
| Development consent / project approval #                 | SSD 7401           |
| Name of holder of development consent / project approval | Bettergrow Pty Ltd |
| Mining lease #                                           | N/A                |
| Name of holder of mining lease                           | N/A                |
| Water Access Licence #                                   | N/A                |
| Name of holder of water licence                          | N/A                |
| MOP/RMP start date                                       | N/A                |
| MOP/RMP end date                                         | N/A                |

I, James Sutton, certify that this audit report is a true and accurate record of the compliance status of Borg Manufacturing Oberon for the period 1<sup>st</sup> May 2021 to 30<sup>th</sup> April 2022 and that I am authorised to make this statement on behalf of Borg Panels Pty Ltd Note.

- a) The Annual Review is an 'environmental audit' for the purposes of section 122B(2) of the Environmental Planning and Assessment Act 1979. Section 122E provides that a person must not include false or misleading information (or provide information for inclusion in) an audit report produced to the Minister in connection with an environmental audit if the person knows that the information is false or misleading in a material respect. The maximum penalty is, in the case of a corporation, \$1 million and for an individual, \$250,000.
- b) The Crimes Act 1900 contains other offences relating to false and misleading information: section 192G (Intention to defraud by false or misleading statement—maximum penalty 5 years imprisonment); sections 307A, 307B and 307C (False or misleading applications/information/documents—maximum penalty 2 years imprisonment, \$22,000, or both.)

| Name of authorised reporting officer      | James Sutton        |
|-------------------------------------------|---------------------|
| Title of authorised reporting officer     | Environment Manager |
| Signature of authorised reporting officer | J. Sulta            |
| Date                                      | 19/12/2023          |



### 1 Introduction

### 1.1 Scope

This Annual Review has been prepared for the Redirect Recycling Pty Ltd (reDirect) Wetherill Park site and covers the twelve-month reporting period from 23 August 2022 to 22 August 2023. This Annual Review has been prepared to satisfy condition C9 of Development Consent SSD 7401 issued by the Minister for Planning on 11 October 2017.

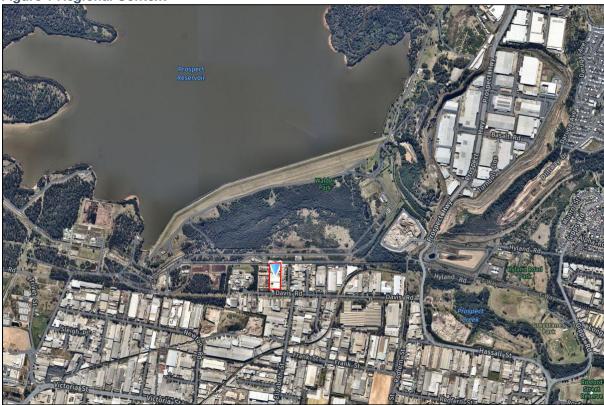
The reDirect facility is located at 24 Davis Road, Wetherill Park NSW and consists of a resource recovery facility purpose built for washing and processing of construction and liquid waste.

This Annual Review is submitted to NSW Department of Planning and Environment (DPE), NSW Environment Protection Authority (EPA) and Fairfiled City Council to ensure all interested parties are kept informed of the environmental performance of the Development. The Annual Review is also made available on the reDirect website:

#### Redirect Recycling

reDirect maintained compliance with all necessary approvals and licenses (EPL 21092 & SSD-7401) during the reporting period recording nil non-compliance items.

Table 1 Compliance


| Relevant<br>approval | Condition | Condition description (summary) | Compliance<br>status | Comment | Where<br>addressed in<br>Annual Review    |
|----------------------|-----------|---------------------------------|----------------------|---------|-------------------------------------------|
| SSD 7401             | C9        | Annual review                   | Compliant            | Nil     | 1.4 Annual<br>Review<br>Requirements      |
| EPL 21092            | L3.1      | Noise                           | Compliant            | Nil     | Section 4.5 Noise                         |
| EPL 21092            | O3.1      | Air Quality                     | Compliant            | Nil     | Section 4.2 Air<br>Quality                |
| EPL 21092            | O5        | Water Quality                   | Compliant            | Nil     | 4.3 Surface Water<br>& 4.4<br>Groundwater |

# 1.2 Background

Consent for State Significant Development 7401 (SSD-7401) was initially granted by the NSW Department of Planning and Environment (DPE) on 22 December 2017. The facility was commissioned in August 2022 and shortly after the licence was transferred to reDirect (a Borg Company) who currently operate the site (see Figure 1).



Figure 1 Regional Context



The development has been staged with only the wash plant operational at this time. The landscape supplies food and garden organics approvals are not operational. Stage 1 includes the wash plant processing area only. Facilities covered under Stage 1 include:

- A main administration building, office and carpark constructed at the fore of the property. Site amenities, including toilets and kitchen, contained in the main administration building.
- Partially enclosed shed space, containing:
  - o Two tier ground levels with external ramp to the west of the shed.
  - o Four hydro-tips, and one dry feed hopper.
  - One weighbridge located west of the shed for the weighing of trucks on entry and prior to departure from the facility.
  - o Screening walls.
  - Drill mud processing plant and equipment.
  - Drill mud machinery control rooms and internal office space.
- An inground sand filter located under the hardstand on the lower level of the site, adjacent to the south-western corner of the existing approved shed, to be used for stormwater retention and treatment.
- Rainwater / raw water storage tanks.
- Main thoroughfare, including:
  - A combined ingress/egress access driveway, providing a 12.5 m width at the western property boundary and facilitating connectivity between the off-street parking and internal heavy vehicle circulation areas.
  - Off-street parking spaces designed in accordance with AS2890.1 and AS2890.6.



- A combined ingress / egress driveway, providing a 5.5 m width adjacent to the eastern property boundary facilitating service access to the office complex and emergency access for Fire NSW.
- Internal hardstand areas and roadways.

The main waste types and materials accepted at the site include:

- Hydro-excavation and drill muds;
- Concrete slurry;
- Stormwater;
- · Street sweepings; and
- General solid waste (soils that meet EPL conditions).

#### 1.3 Consent

Consent for State Significant Development 7401 (SSD-7401) was initially granted by the then NSW Department of Planning and Environment (DPE) on 22 December 2017. Consent for Modification 1 of SSD-7401 (SSD-7401-MOD-1) was approved by the NSW Department of Planning, Industry and Environment (DPIE) on 21 April 2021, with consent for Modification 2 (SSD-7401-MOD-2) granted on 30 November 2021. Consent for Modification 3 (SSD-7401-MOD-3) was granted by DPE (name reverted from DPIE) on 1 April 2022.

Approval for SSD-7401 permitted the construction and operation of a resource recovery facility to process up to 160,000 tonnes per year of waste comprising of:

- 60,000 tonnes per annum (tpa) of hydro-excavation, drill muds and fluids.
- 70,000 tpa of food and garden organics.
- 30,000 tpa of packaged and bulk food and liquids.

In addition, the approval for SSD-7401 allowed for the operation of a landscaping material supplies facility for the storage and sale of up to 40,000 tpa of landscaping supplies.

Approval of SSD-7401-MOD-1 allowed for the increase of processing capacity to 350,000 tpa in conjunction with the following:

- Introduction of additional waste streams.
- Demolition of existing structures.
- Construction of a partially enclosed shed.

SSD-7401-MOD-2 included the replacement of the 30, 000 L sediment basin and associated bioretention basin, located within the southwest corner of the subject site. In lieu of the detention and bioretention basins it was proposed to utilise an existing inground concrete pit that remains onsite as part of a decommissioned weighbridge. This pit was modified and improved to include a sand filter to treat onsite stormwater.

SSD-7401-MOD-3 included the following:

- Replacement of the five (5) approved weighbridges with one (1) 25 m by 4.2 m weighbridge located approximately 55 m from the Facility intersection with Davis Road.
- To facilitate weighbridge installation and improve site safety, vehicle parking spaces were reconfigured:
  - Five (5) parking spaces immediately east of the existing site office.
  - Two (2) parking spaces located north of the inground sand filter, abutting the western façade of the drill muds processing shed.
  - Five (5) parking spaces located on the hardstand area immediately north of the western parcel of retained Cumberland Plain Woodland.



- o Remaining parking spaces were not altered.
- Relocation of proposed humeceptor water treatment device to the north-western corner of the central portion of Cumberland Plain Woodland onsite.
- Relocation of the 5,000 L rainwater tank to inside drill muds processing shed next to the control room. Rainwater from the existing office will now be captured via the Facility stormwater network.

This Annual Review covers facility operations conducted under Stage 1 of SSD-7401 (including modifications). Stage 2 (bulk landscape area and the organics processing area) is not operational, therefore assessment of conditions specific to Stage 2have not been triggered or included within this report.

A summary of development consents including modifications currently held by Bettergrow Pty limited (original applicant) is presented in Table 2.

**Table 2 Development Consents** 

| Consent<br>Description                   | Approval Date       | Approval<br>Authority        | Approved Development                                                                                                                                                                                                                                                         |
|------------------------------------------|---------------------|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Development<br>Consent SSD 7401          | 22 December<br>2017 | NSW Minister for<br>Planning | The construction and operation of a resource recovery facility to process up to                                                                                                                                                                                              |
|                                          |                     |                              | 160,000 tonnes per year of waste comprising of:                                                                                                                                                                                                                              |
|                                          |                     |                              | 60,000 tpa of hydro-excavation, drill muds and fluids;                                                                                                                                                                                                                       |
|                                          |                     |                              | • 70,000 tpa of food and garden organics; and                                                                                                                                                                                                                                |
|                                          |                     |                              | • 30,000 tpa of packaged and bulk food and liquids.                                                                                                                                                                                                                          |
|                                          |                     |                              | The operation of a landscaping material supplies facility for the storage and                                                                                                                                                                                                |
|                                          |                     |                              | sale of up to 40,000 tpa of landscaping supplies.                                                                                                                                                                                                                            |
| Development<br>Consent SSD 7401<br>MOD 1 | 21 April 2021       | NSW Minister for<br>Planning | Increase the processing capacity to 350,000 tpa of waste; introduce additional waste streams; demolish existing structures; construct a partially enclosed shed; and increase the hours of operation to 24/7.                                                                |
| Development<br>Consent SSD 7401<br>MOD 2 | 30 November<br>2021 | NSW Minister for<br>Planning | Amend the stormwater management system to include the use of an in-ground concrete pit with sand filter.                                                                                                                                                                     |
| Development<br>Consent SSD 7401<br>MOD 3 | 31 March 2022       | NSW Minister for<br>Planning | Amend the carparking configuration, replace the five on-site weighbridges with one weighbridge, relocate the 5 kilolitre underground rainwater tank to an above ground tank inside the drill muds processing shed and replace and relocate the Humeceptor with an Ecoceptor. |



### 1.4 Annual Review Requirements

In accordance with condition C9 of Development Consent SSD 7401, annual review requirements and the sections within this review where these are addressed have been summarised in Table 3.

**Table 3 Annual Review Requirements** 

| Develop | oment Consent SSD 7401 – Condition C9                                                                                                                           | Section of Annual<br>Review |  |  |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--|--|
|         | ar, the Applicant must review the environmental performance of the ment to the satisfaction of the Planning Secretary. This review must:                        | This Report                 |  |  |
| (a)     | describe the development that was carried out in the previous calendar                                                                                          | Section 2                   |  |  |
|         | year, and the Development that is proposed to be carried out over the next year;                                                                                | Section 8                   |  |  |
| (b)     | include a comprehensive review of the monitoring results and complaints                                                                                         | Section 4                   |  |  |
|         | records of the Development over the previous reporting period, which includes a comparison of these results against the:                                        | Section 5                   |  |  |
|         | <ul> <li>the relevant statutory requirements, limits or performance<br/>measures/criteria;</li> </ul>                                                           |                             |  |  |
|         | ii. requirements of any plan or program required under this consent;                                                                                            |                             |  |  |
|         | iii. the monitoring results of previous years; and                                                                                                              |                             |  |  |
|         | iv. the relevant predictions in the EIS;                                                                                                                        |                             |  |  |
| (c)     |                                                                                                                                                                 | Section 4                   |  |  |
|         | actions were (or are being) taken to ensure compliance;                                                                                                         | Section 7                   |  |  |
| (d)     | identify any trends in the monitoring data over the life of the Development;                                                                                    | Section 4                   |  |  |
| (e)     | ) identify any discrepancies between the predicted and actual impacts of the Development, and analyse the potential cause of any significant discrepancies; and |                             |  |  |
| (f)     | describe what measures will be implemented over the next reporting period to improve the environmental performance of the Development.                          |                             |  |  |

#### 1.5 Environment Protection Licence

reDirect operates in accordance with Environment Protection Licence 21092 (EPL 21092), issued by the NSW Environment Protection Authority (EPA) under Section 55 of the *Protection of the Environment Operations Act 1997*. The current Licence version date is 01 June 2023.

The EPL was varied and updated during this reporting period to include additional waste streams including concrete slurry, stormwater, and street sweepings.

#### 1.6 Water Licences

reDirect does not hold any water licences.

#### 1.7 Trade Waste Licence

reDirect's Trade Waste Service Contract with Sydney Water for the discharge of liquid trade waste into Sydney Water's sewerage system was initially approved on 01 August 2022 prior to the site's operational start date (22 August 2022). Following an initial period of sampling every 8 days or on the day the trade waste was discharged thereafter, reDirect was able to demonstrate compliance in accordance with the Consent to Discharge Trade Wastewater. Subsequently, an updated Consent to Discharge Trade Wastewater was issued by Sydney Water, outlining sampling to be conducted every 60 days from 09 July 2023 or on the day the



tradewaste was discharged thereafter. Additionally, Sydney Water also advised the substance characteristics to be analysed were limited to:

- Biochemical Oxygen Demand
- Ammonia (As N)
- Sulphate
- Suspended Solids
- Total Dissolved Solids

### 1.8 Environmental Management Plans

As per Schedule 2 Part C of SSD 7401, the existing development is carried out in accordance with the Operational Environmental Management Plan (OEMP) and associated sub-plans.

In accordance with C8 Revision of Strategies, Plans and Programs, environmental management plans are required to be reviewed within three months of completion of an audit under C14 and/or approval of an annual report review under C9. Redirect have recently received correspondence from DPE (dated 8 December 2023) determining the recently completed Independent Environmental Audit to generally satisfy the reporting requirements of the consent and the NSW Planning *Independent Audit Post Approval Requirements* (2020). Redirect will update all management plans accordingly. Further updates to management plans will also be reviewed following assessment of this annual review. No previous reviews of plans had occurred within the audit period. The following management plans will be reviewed and updated where necessary.

- Operational Environmental Management Plan
- Air Quality and Odour Management Plan
- Stormwater Management Plan
- Operational Waste Management Plan
- Flood Emergency Plan
- Water Management Plan
- Emergency Plan
- Operational Traffic Management Plan
- Conceptual Decomisssioning management Plan

#### 1.9 Contacts

Table 4 outlines the contact details for site personnel responsible for managing environmental operations the reDirect facility.

Table 4 Site Personnel

| Name          | Title                 | Contact Details |
|---------------|-----------------------|-----------------|
| Neale Hogarth | Manager               | 0498 692 443    |
| James Sutton  | Environmental Manager | 0414 987 168    |

# 1.10 Actions Required from Previous Annual Review

No previous reporting period has preceded the current 2022/2023 reporting period. Therefore, no comparison of activities and results / outcomes has been included in this annual review. Table 5 represents where any proposed activities and outcomes would normally be represented.



#### Table 5 Proposed Activities in 2022/23 Reporting Period

| Activities Proposed in Reporting Period | Results achieved in Reporting Period |
|-----------------------------------------|--------------------------------------|
| N/A                                     | N/A                                  |
|                                         |                                      |
|                                         |                                      |
|                                         |                                      |

# 2 Operations during the Reporting Period

#### 2.1 Production

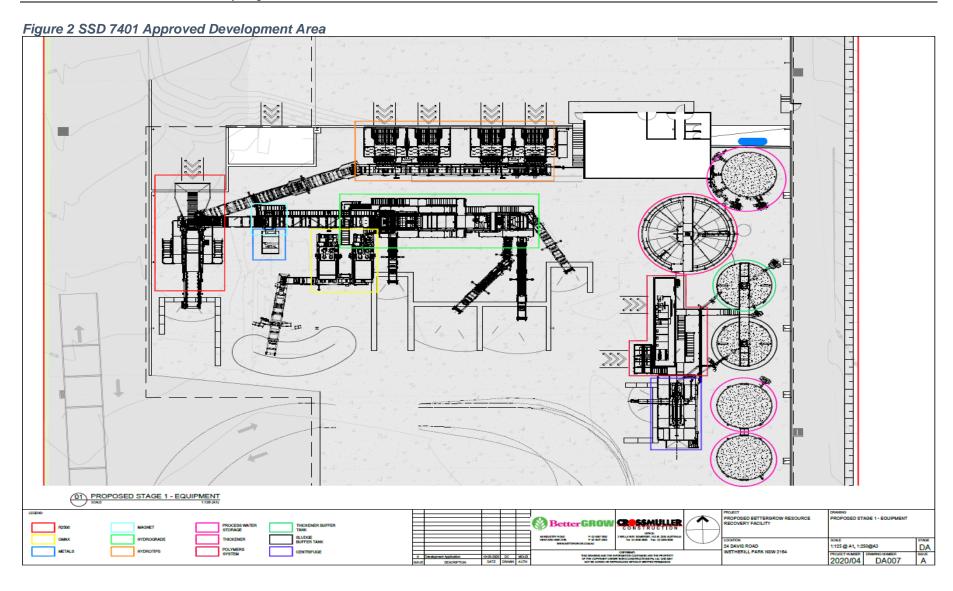
Development Consent SSD 7401 allows for the receival and processing of upto 350,000 tonnes of waste per year, including 100,000 tonnes of liquid waste and 150,000 tonnes of general solid waste. During the reporting period reDirect received and processed a total of 46,858 tonnes of combined liquid and general solid waste. A total of 28,126 tonnes were recovered and beneficially reused under applicable resource recovery orders. 32.34 tonnes were sent to landfill for lawful disposal, comprising of trash and light organics.

### 2.2 Facility Improvements

The following improvements were made to site infrastructure, plant and/or equipment during the reporting period:

- Complete installation of blind sumps within concrete slab of bunded area to reduce surface water on shed floor from processed product stockpiles;
- Upgrade of pumps allowing more efficient removal of water and silt from strip drains and sumps;
- Installation of additional wash hoses and pump for 250,000 L concrete overflow pit;
   and
- Installation of side walls on conveyor belts to stop spillages during processing.

See **Figure 2** for location of site infrastructure.


#### 2.3 Site Activities

Environmental commitments and management/mitigation measures that were applied during the reporting period include the following:

- operational works undertaken in accordance with the Operational Environmental Management Plan and sub-plans;
- Surface water sampling events;
- background groundwater quality sampling events;
- site environmental inspections; and
- site wide communication of environmental requirements via inductions and Toolbox Talks.

No activities associated with additional construction were undertaken within the reporting period.







# 3 Waste Management

Waste generated at the reDirect site is managed in accordance with the Waste Management Plan that has been developed for the facility. The management process incorporates a system of recycling and reuse of waste materials where possible. Waste that cannot be incorporated into this system is removed from site and taken to landfill for lawful disposal.

#### 3.1 Solid Waste

A summary of waste and resource recovery materials removed from reDirect Wetherill Park during the reporting period is provided in Table 6.

Table 6 Waste Management 2022/23

| Month         | Destination |                             |                                |  |
|---------------|-------------|-----------------------------|--------------------------------|--|
|               | Tonnes      | Waste                       | Reuse / Disposal               |  |
| August 2022   | 162.1       | Washed sand                 | Resource recovery material     |  |
| September     | 17.62       | Recovered aggregate 5-20mm  |                                |  |
| 2022          | 1123.1      | Treated drill mud           | Resource recovery material     |  |
|               | 543.9       | Washed sand                 |                                |  |
| October 2022  | 180.04      | Recovered aggregate 5-20mm  |                                |  |
|               | 24.08       | Recovered aggregate 20-40mm |                                |  |
|               | 1995.21     | Treated drill mud           | Resource recovery material     |  |
|               | 689.86      | Washed sand                 |                                |  |
| November 2022 | 224.26      | Recovered aggregate 5-20mm  |                                |  |
|               | 14.84       | Recovered aggregate 20-40mm | Resource recovery material     |  |
|               | 1807.88     | Treated drill mud           |                                |  |
|               | 923.12      | Washed sand                 |                                |  |
| December 2022 | 160.64      | Recovered aggregate 5-20mm  | D                              |  |
|               | 1660.7      | Washed sand                 | Resource recovery material     |  |
| January 2023  | 779.64      | Recovered aggregate 5-20mm  |                                |  |
|               | 72.34       | Recovered aggregate 20-40mm | December management manatarial |  |
|               | 307.66      | Treated drill mud           | Resource recovery material     |  |
|               | 278.82      | Washed sand                 |                                |  |
| February 2023 | 325.9       | Recovered aggregate 5-20mm  |                                |  |
|               | 36.36       | Recovered aggregate 20-40mm |                                |  |
|               | 1070.3      | Treated drill mud           | Resource recovery material     |  |
|               | 769.8       | Washed sand                 |                                |  |
| March 2023    | 961.28      | Recovered aggregate 5-20mm  |                                |  |
|               | 72.26       | Recovered aggregate 20-40mm | Resource recovery material     |  |



|             | 356.46   | Treated drill mud           |                                           |
|-------------|----------|-----------------------------|-------------------------------------------|
|             | 1145.24  | Washed sand                 |                                           |
| April 2023  | 953.94   | Recovered aggregate 5-20mm  |                                           |
|             | 38.08    | Recovered aggregate 20-40mm |                                           |
|             | 10.46    | Recovered aggregate 40-80mm | Resource recovery material                |
|             | 197.32   | Treated drill mud           |                                           |
|             | 807.92   | Washed sand                 |                                           |
| May 2022    | 32.34    | Organics / light trash      | Wanless Waste Management –<br>Kemps Creek |
|             | 1023.84  | Recovered aggregate 5-20mm  |                                           |
|             | 267.06   | Recovered aggregate 20-40mm |                                           |
|             | 56.14    | Recovered aggregate 40-80mm | Resource recovery material                |
|             | 792.84   | Treated drill mud           |                                           |
|             | 606.54   | Washed sand                 |                                           |
| June 2022   | 565.36   | Recovered aggregate 5-20mm  |                                           |
|             | 105.58   | Recovered aggregate 20-40mm |                                           |
|             | 201.96   | Recovered aggregate 40-80mm | Resource recovery material                |
|             | 1445.2   | Treated drill mud           |                                           |
|             | 959.94   | Washed sand                 |                                           |
| July 2022   | 347.5    | Recovered aggregate 5-20mm  |                                           |
|             | 37.2     | Recovered aggregate 20-40mm |                                           |
|             | 25.44    | Recovered aggregate 40-80mm | Resource recovery material                |
|             | 1474.3   | Treated drill mud           |                                           |
|             | 1086.7   | Washed sand                 |                                           |
| August 2023 | 278.8    | Recovered aggregate 5-20mm  | Resource recovery material                |
|             | 906.94   | Treated drill mud           |                                           |
|             | 843.74   | Washed sand                 |                                           |
| TOTAL       | 32.34    | Organics / light trash      | Wanless Waste Management<br>Kemps Creek   |
|             | 5818.82  | Recovered Aggregate 05–20mm | Resource recovery material                |
|             | 643.72   | Recovered Aggregate 20–40mm | Resource recovery material                |
|             | 318.08   | Recovered Aggregate 40–80mm | Resource recovery material                |
|             | 11477.21 | Treated Drilling Mud        | Resource recovery material                |
|             | 10478.38 | Washed Sand                 | Resource recovery material                |

Waste types in Table 6 are further described as:



- Organics and Light Trash: General waste including a mix of organics such as sticks, leaf litter and other organic matter mixed with light film plastic and other small anthropogenic inclusions.
- **Resource Recovery Material:** Material meeting a general or site-specific resource recovery order made under clause 93 of the 2014 Waste Regulation.

There was no trackable waste generated during this reporting period.

#### 3.2 Trade Waste

Redirect's current trade waste agreement (Consent no: 51950) allows for the following discharge rates to Sydney Water's wastewater system:

- Instantaneous maximum rate of pumped discharge 8,000 litres per second
- Maximum daily discharge 320 kilolitres
- Average daily discharge 200 kilolitres

The last sampling event conducted during the reporting period was completed on 02 August 2023, 20 days prior to the end of the reporting period. A total of 106 kilolitres were discharged during the sampling event, well below the average and maximum daily discharge limits. Additionally, sampling completed since the commencement of the agreement confirmed a total of 28487 kilolitres had been disposed as trade waste up to this date, equating to a daily average of 82.6 kilolitres.

# 4 Environmental Monitoring and Performance

# 4.1 Environmental Management System

ReDirect operates in accordance with the Operational Environmental Management Plan (OEMP) as documented in Section 1.8. This OEMP aims to ensure adequate management, monitoring and mitigation systems are in place to protect the surrounding environment. Similarly, construction activities are undertaken in accordance with the Construction Environmental Management Plan (CEMP).

Environmental performance and management are conducted in accordance with the requirements of SSD 7401, its subsequent modifications (MOD1, MOD2 & MOD3), and EPL 21092. Environmental performance and monitoring are an integral part of environmental management system. The measurement and evaluation of monitoring results allows for the assessment of performance against quantitative and qualitative standards and assists in the identification of any non-conformances or areas that may require additional attention.

# 4.2 Air Quality

Air quality is monitored in accordance with the reDirect's Operational Air Quality and Odour Management Plan (AQOMP). Condition O3.1 of EPL 21092 states that:

"The premises must be maintained in a condition which minimises or prevents the emission of dust from the premises."

Additionally, Condition L5.1 of EPL 21092 states that:

"The licensee must not cause or permit the emission of offensive odour beyond the boundary of the premises."



EPL 21092 does not specify dust monitoring be undertaken, the AQOMP assessed material handling and processing in the drill mud processing plant to have minimal fugitive dust emissions due to the high moisture content of waste received and retained within recovered processed materials. Additionally, road surfaces at the Site are sealed and processing is undertaken within the partially enclosed shed, currently no other activities approved under SSD-7401 are undertaken as part of the development. All current dust management procedures undertaken as part of the AQOMP and OEMP are currently deemed suitable and effective.

As Stage 1 operations only involves the drill mud processing plant, dust emissions have been identified as the only air quality impact associated with these operations. Therefore, no management of odour generating activities was required during the reporting period.

#### 4.3 Surface Water

Surface water is considered any water other than process water, leachate or wastewater being defined as:

- Process water is water used in the processing of drill muds.
- Leachate is water generated typically through the action of rain coming into contact with soil stockpiles. Leachate is not anticipated to be generated onsite during Stage 1 of operations due to bulk storage bays being underneath the main processing shed.
- Wastewater is water generated through the processing of drill muds that require disposal or have no further use on site.

Surface water is, thus, principally stormwater runoff from building roofs and areas outside waste processing or handling areas.

Surface water discharges from operational areas of the site and areas with potential to discharge off-site are summarised in the following table. Surface water may also discharge from other areas of the site, but these areas are away from operational areas.

Table 7 Surface Water Sources and Management

| Site Feature                    | Purpose              | Runoff Water Sources                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Management                                                                                                                                                                                                                                          |
|---------------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Entrance<br>Driveway            | Site access          | The driveway receives runoff from paved areas near the weighbridge and entrance areas.                                                                                                                                                                                                                                                                                                                                                                                                           | Management under the surface water management plan – though this is considered a low risk of impact.                                                                                                                                                |
| Drill Mud<br>Processing<br>Shed | Rainwater re-<br>use | A portion of roof water runoff from the drill mud processing shed is to be directed by downpipes to an aboveground rainwater harvesting tank which has been sized to meet the facility's reuse demand for nonpotable water of 5 kL.  The harvested volume from the shed roof is reused internally through the amenities connections with tank overflows being diverted directly to the stormwater system.  The remainder of the roof water collected is to be directed to the stormwater system. | Ensure downpipe leaf eaters, first flush devices and litter screens are unblocked and are operating correctly. Regularly check the structural integrity of the tanks. Check for any accumulated litter, sediment, or debris on or within the tanks. |



| Stormwater<br>System | Collection,<br>treatment and<br>transportation<br>of stormwater<br>from the site. | Runoff from majority of sealed surfaces on the site, all roof areas not connected to the rainwater tank system and rainwater tank overflow will be diverted into the stormwater system. | Management under the stormwater management plan (Eclipse 2021) and the WMP. Remove deposited sediment and debris from the sand filter bed/detention pit and Ecoceptor inlet/outlet areas. Regularly check the structural integrity of |
|----------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                      |                                                                                   |                                                                                                                                                                                         | hydraulic structures.                                                                                                                                                                                                                 |

In accordance with the reDirect Water Management Plan, six-monthly (following a rainfall event) sampling of two sampling points on-site (SW1 in the sand filter and SW2 in the ecoceptor outflow sampling point) was undertaken during this reporting period.

A summary of the results is presented in Table 8 and Table 9.

Table 8 Surface Water Observations and Geotechnical Requirements

| Event/Location     | Dissolved<br>Oxygen (mg/L) | Electrical Conductivity (µs/cm) | рН  | Redox<br>(Eh) (mV) | Temperature (°C) | Observations                                         |
|--------------------|----------------------------|---------------------------------|-----|--------------------|------------------|------------------------------------------------------|
| February –<br>SW01 | 4.23                       | 196                             | 7.5 | 220                | 21.8             | light brown, no odour, no sheen, moderately turbid   |
| August –<br>SW01   | 8.55                       | 719                             | 8.4 | 81                 | 14.0             | light brown, no odour, no sheen, moderately turbid   |
| February –<br>SW02 | 3.85                       | 366                             | 7.0 | 215                | 22.2             | pale brown, no odour, no<br>sheen, moderately turbid |
| August –<br>SW02   | 8.45                       | 650                             | 8.9 | 62                 | 12.8             | white, no odour, no<br>sheen, slightly turbid        |



Table 9 Surface Water Analytical Summary

| Analyte /                          | Screening Criteria Exceedances |                                                                                                                                                                                                                                                                                                    |                    | Comment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
|------------------------------------|--------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Value                              | Health-Risk                    | Ecological Risk                                                                                                                                                                                                                                                                                    | Aesthetics         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| Heavy<br>metals and<br>metalloids  | None<br>identified             | Heavy metal concentrations were reported at low levels less than relevant screening criteria for highly disturbed environments with the exceptions of:  Copper (at SW1, and SW2 in February 2023).  Zinc (SW2 in August 2023). The average concentration (0.012 mg/L) was less than the criterion. | -                  | Metals concentrations were generally less than or similar to relevant screening criteria for disturbed ecosystems consistent with the WMP.  Copper concentrations reported were slightly elevated above screening criteria at SW1 – this represents water prior to on-site treatment via the sand filter. The average concentration at SW2 (Ecoceptor outflow point) (0.002 mg/L) was lower and equivalent to the criterion (0.0018 mg/L).  The reported zinc concentration at SW2 in August 2023 was elevated (an order of magnitude) above other sample results – the cause for this is unclear and quality should be reviewed following further monitoring under the WMP. |  |
| Nutrients                          | None<br>identified             | No exceedances for toxicants.<br>Exceedances of conservative<br>physical stressor values for<br>total oxidised nitrogen (as N),<br>TN and TP.                                                                                                                                                      | -                  | Concentrations are similar or less than median values for TN (1.7 mg/L) and TP (0.31 mg/L) in stormwater runoff in urban or commercial/ industrial areas in east coast Australia reported by Drapper et al (2022) and Fletcher et al (2004).                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| Organic<br>CoPC                    | None<br>identified             | None identified                                                                                                                                                                                                                                                                                    | -                  | TRH, BTEX, PAHs were not detected in water samples.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| Physico-<br>chemical<br>Parameters | None<br>identified             | None identified                                                                                                                                                                                                                                                                                    | None<br>identified | TSS ranged from 39 to 238 mg/L.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |

There are indications that concentrations of key parameters (TN, TP TSS) are lower at SW2 (downstream of treatment train) than SW1 (upstream of system). However, further monitoring as required by the WMP is needed to assess the performance of the treatment system(s) – this should be evaluated in the next annual report. The water, sediment and erosion controls in the WMP should continue to be followed to minimise the migration of sediments and fines into the stormwater system.

A copy of the Surface Water Monitoring report – Annual 2023 (Senversa, 2023) has been included in Appendix A.

#### 4.4 Groundwater

In accordance with the reDirect Water Management Plan, A new monitoring network was established, including the installation of 6 shallow groundwater monitoring wells that intersect the water table located within the shale bedrock.

These new wells were installed as part of the site infrastructure upgrades. Senversa (engaged by reDirect) designed a groundwater monitoring network that seeks to characterise groundwater both hydraulically up-gradient and down-gradient of the site. The location of the groundwater monitoring wells is presented on **Figure 3**. The groundwater monitoring network comprises:



- One well (MW06) that captures the quality of background groundwater migrating onto the site from the north.
- Five wells (MW01, MW02, MW03, MW04, MW05) placed in targeted locations with the following rationale.
- MW01 Down gradient of the stormwater treatment sand filter box.
- MW02 Down gradient of the Ecoceptor.
- MW03 Western site boundary down gradient of neighbouring property.
- MW04 Down gradient of the drill mud processing facility on eastern boundary.
- MW05 Middle level of site in the vicinity of the historic aboveground storage tanks (ASTs).

The wells target the shallow groundwater as this is most susceptible to impact.



Figure 3 Groundwater Monitoring Locations



A baseline monitoring event is required, with ongoing groundwater monitoring conducted on a periodic basis. Additional monitoring will likely be required - triggered as a response to changes in site activities such as the commencement of Stage 2 operations. The monitoring locations, and sampling, analytical and reporting schedules are provided in the following Table 10.



#### Table 10 Groundwater Monitoring Frequency

| Туре     | Frequency                                                 | Monitoring Aspect                        | Locations                                | Analytical Schedule                                                                                                                                                               | Reporting<br>Schedule                                              |
|----------|-----------------------------------------------------------|------------------------------------------|------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| Baseline | Sampling<br>every 6<br>months for a<br>two year<br>period | Gauging, <u>sampling</u> and<br>analysis | MW01, MW02,<br>MW03, MW04,<br>MW05, MW06 | Field: pH, electrical conductivity<br>(EC), dissolved oxygen (DO)<br>and redox potential.<br>Laboratory: Ammonia (as N),<br>nitrate, TN, TP, dissolved<br>metals, TPH, BTEX, PAH. | Interpretive<br>baseline report                                    |
| Periodic | Annual, then reviewed after three years                   | Gauging, sampling and analysis           | MW01, MW02,<br>MW03, MW04,<br>MW05, MW06 | Field: pH, EC, DO and redox potential.  Laboratory: TRH, TN, JP and dissolved metals. Additional contaminants based on the findings of the baseline assessment.                   | Annual data<br>report, then 3-<br>year<br>interpretative<br>report |
| Event    | Triggered                                                 | Sampling and analysis*                   | As required*                             | As required*                                                                                                                                                                      | Reporting as above                                                 |

All sampling was undertaken by a suitably qualified and experienced person consistent with guidance in:

- DEC (2004). Approved Methods for Sampling and Analysis of Water Pollutants in NSW. March 2004.
- AS/NZS 5667.1:1998, Water Quality Sampling series.
- NEPC (2013). Schedule B (2) Guideline on Site Characterisation.

Appropriate data QA/QC procedures consistent with the above guidance were implemented and assessed as part of the program.

All analyses was conducted by a NATA accredited laboratory.

Groundwater management reporting requirements are outlined in Table 11.



#### Table 11 Groundwater Reporting Requirements

#### Report Type Content Details of monitoring scope and methods, and any non-conformances with this WMP. Baseline Groundwater Assessment Report Digitisation and analysis of historic groundwater monitoring results. (following completion of A plan showing monitoring locations. sampling) A plan showing groundwater elevations and inferred flow. Field records, calibration certificates and laboratory analytical certificates. Combined results for the first four monitoring events, including summary tables of gauging, field measurements and analytical data. Comparison of analytical results against performance criteria and historic results. Review of QA/QC. Statistical analysis of historical data for key chemicals of concern, including the mean, minimum, maximum, 80th percentile of site background groundwater quality (MW06) and baseline groundwater quality (at newly installed wells) to allow future comparison to Reporting shall be conducted in accordance with NSW EPA made or approved guidance. Details of monitoring scope and methods, and any non-conformances with this WMP. Data Report (annual) A plan showing monitoring locations. Field records, calibration certificates and laboratory analytical certificates. Tabulated results (gauging, field measurements and analytical data). Comparison of analytical results against performance criteria and baseline.

Condition L1 of the EPL states that the licensee must comply with section 120 of the POEO Act, which prohibits the pollution of waters. Assessment of groundwater quality will principally be via comparison against baseline and site background conditions. Table 12 below summarises the groundwater quality criteria to be adopted to assess whether pollution of waters may have occurred.

**Table 12 Groundwater Reporting Requirements** 

| Receptor                                            | Adopted Assessment Criteria                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Change to<br>baseline /<br>background<br>conditions | No statistically significant increasing trend or 20% increase over baseline / background concentrations or field parameters.                                                                                                                                                                                                                                                                                                                                                        |
|                                                     | Relevant criteria in NEPC (2013) for the commercial/industrial land use setting should be adopted as a screening levels. This includes:                                                                                                                                                                                                                                                                                                                                             |
| Human<br>Health                                     | <ul> <li>Direct contact criteria have also been considered due to the relatively shallow depth to groundwater in<br/>some locations. The presence of concrete and asphalt hardstand however indicates that groundwater<br/>will be predominantly inaccessible to humans. Drinking water guidelines will not be considered, given<br/>the site geology, land use and provision of a reticulated drinking water supply.</li> </ul>                                                    |
|                                                     | <ul> <li>Health Screening Level (HSL) for commercial/industrial land use (HSL-D) for vapour intrusion, sand<br/>aquifer, 2-&lt;4 m based on the presence of fill and clay in the subsurface the most conservative soil type<br/>of sand has been selected.</li> </ul>                                                                                                                                                                                                               |
|                                                     | No gross aesthetic impacts such as non-aqueous phase liquids.                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Ecological                                          | Groundwater may migrate and discharge into Prospect Creek, which is the nearest surface water body down gradient of the site, though the ultimate receiving environment is the George's River and Botany Bay (marine). Northrop Pty Ltd (2017) indicate the local receiving waterways are heavily disturbed. The relevant ecological guidelines for toxicants, are therefore, the <u>fresh water</u> default guidelines values for heavily disturbed environments from ANZG (2018). |
| J                                                   | <ul> <li>ANZG (2018) notes that exceedance of a DGV does not necessarily imply that there is an inherent risk rather that further assessment and monitoring may be required prior to implementing appropriate management actions. These values should be used as 'triggers' for further assessment.</li> </ul>                                                                                                                                                                      |
|                                                     | These may be applied for screening purposes for groundwater that has the potential to migrate from the site.                                                                                                                                                                                                                                                                                                                                                                        |



Tabulated groundwater monitoring results have been provided in Appendix B. The results for both the February and August sampling events are broadly similar. There are exceedances of ecological assessment criteria for certain metals and conservative human health criteria for manganese and nickel. Organic compounds (such as petroleum hydrocarbons) were reported below the limit of reporting. A baseline report will be completed and accompany the 2023/2024 annual report.

#### 4.5 Noise

In accordance with EPL 21092, noise from the premises must not exceed the limits noted in Table 13. In accordance with Development Consent SSD-7401 all construction activities related to the development must also comply with the limits in Table 13.

Table 13 Noise Limits dB(A)

| Location                | Day                         | Evening                     | Night                       | Night                      |
|-------------------------|-----------------------------|-----------------------------|-----------------------------|----------------------------|
|                         | L <sub>Aeq(15 minute)</sub> | L <sub>Aeq(15 minute)</sub> | L <sub>Aeq(15 minute)</sub> | L <sub>Aeq(1 minute)</sub> |
| All sensitive receivers | 35                          | 35                          | 35                          | 45                         |

Note: <u>Day</u> – The period from 7:00am to 6:00pm

Evening – The period from 6:00pm to 10:00pm Night – The period from 10:00pm to 7:00am

LAeq means the equivalent continuous noise level – the level of noise equivalent the energy-average

of noise levels occurring over a measurement period.

#### 4.5.1 Operational Noise

EPL 21092 stipulates that noise monitoring is to be carried out upon the request of an authorised NSW EPA officer. If requested, noise monitoring must be undertaken in accordance with *Australian Standard AS 1055: 2018 Acoustics - Description and measurement of environmental noise*, and the compliance monitoring guidance provided in the NSW *Noise Policy for Industry* (EPA 2017).

During the 2022/23 reporting period, reDirect was not requested to complete any noise monitoring.

# 5 Community Relations

### 5.1 Environmental Complaints

No community complaints were received during the 2022/23 reporting period.

# 5.2 Community Liaison

#### 5.2.1 Information Exchange

In accordance with EPL 21092 condition M3.1 and M3.2, reDirect operate a telephone complaints line for the purpose of receiving any complaints from the members of the public in relation to activities conducted at the premises or by any vehicle or mobile plant. The complaints line is published on the reDirect recycling website, so the public know how to contact reDirect should a scenario trigger a complaint.



# 6 Independent Audit

Development Consent SSD 7401 condition C13 sets out requirements for independent environmental audits of the Development. reDirect commissioned environmental consultants RPS AAP Consulting Pty Ltd (RPS) to conduct an Independent Environmental Audit (IEA) of the site for operations audit period 23 August 2022 to 14 September 2023 (site inspection date) and construction period preceding operation of the site.

RPS noted good environmental management practices occurring at Redirect Recycling Wetherill Park. reDirect's compliance management consists of daily site inspection checklists, inspection of incoming loads and staff training. Overall, reDirect's general environmental management was commended. Appropriate shed layout, bunding and storage of materials, regular cleaning of the shed floor and other environmental management processes contribute to effective minimisation of the development's environmental impacts. The IEA concluded that the Development was undertaken generally in accordance with SSD 7016, the EIS and RTS, development layout plans and drawings, management and mitigation measures, and documents and drawings of the Existing Development.

There were 2 non-compliances (items) with 2 associated corrective actions raised. Corrective actions associated with Condition A27 have been completed by reDirect and required the provision of existing dilapidation to DPE. Corrective actions associated with Condition B14 will not be triggered until further construction is planned and/or determined, due to the nature of specific detail required to be incorporated into the Construction and Demolition Waste Management Plan.

The IEA Report was submitted to DPIE on 17 October 2023.

In accordance with SSD 7401 condition C13 the next IEA is scheduled for 2026.

# 7 Environmental Incidents & Non-compliances

Environmental incidents are managed through reDirect's Pollution Incident Response Management Plan (PIRMP) and are logged in DataStation, reDirect's incident management system. Each incident report details the issue, the corrective and preventative actions taken, and the responsibilities and timing for completion of the actions. The report also includes any additional comments relevant to the incident and the completion date of corrective actions.

#### 7.1 Incidents

A pollution incident that requires notification is defined in section 147 of the Protection of the Environment Operations Act 1997 as:

- (a) Harm to the environment is material if:
  - It involves actual of potential harm to the health or safety of human beings or the ecosystems that is not trivial, or
  - ii. If results in actual or potential loss or property damage of an amount, or amounts in aggregate, exceeding \$10,000 (or such other amount as is prescribed by the regulations),
- (b) Loss includes the reasonable costs and expenses that would be incurred in taking all reasonable and practicable measures to prevent, mitigate or make good harm to the environment.

During this reporting period, there were no reportable environmental pollution incidents at the reDirect facility.



#### 7.2 Non-conformances

reDirect recycling have not been issued with any non-conformance or breach of licence correspondence from NSW DPE or NSW EPA, respectively. Additionally, reDirect have not determined any non-compliances regarding operation of the site except for those detailed within Section 6 Independent Audit, therefore not repeated in this section. It should be noted that neither of the non-compliance items raised warranted reporting to the NSW DPE.

# 8 Activities Proposed for the next Annual Review Period

reDirect will endeavour to carry out the activities listed in Table 14 during the 2022/23 reporting period to assist with improving the environmental performance of the existing development and the project.

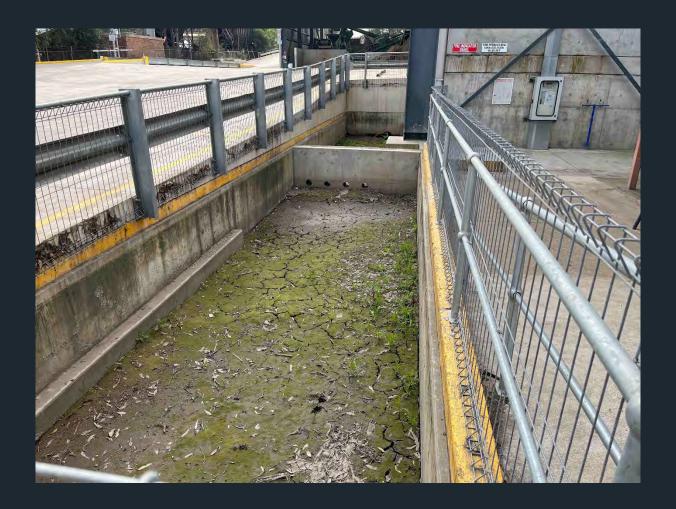
#### Table 14 Proposed activities for 2023/2024 reporting period

Ongoing implementation of Environmental Management Plans for the existing development and the project.

Complete installation of new centrifuge to increase efficiency in material processing.

Attain new site-specific resource recovery order and exemption (SSRRO/E) for processed materials allowing new uses and increased efficiency for resource recovery activities.

Continue erosion and sediment control inspections and rectification works as necessary to manage stormwater discharge.


Update current operational management plans to reflect recommendations from audit and findings from annual review.



# **APPENDICIES**



# **Appendix A – Surface Water Monitoring Report**





# Surface Water Monitoring Report – Annual 2023

ReDirect Resource Recovery Facility, 24 Davis Road, Wetherill Park, NSW

21 September 2023



# **Document Information**

# Surface Water Monitoring Report – Annual 2023 ReDirect Resource Recovery Facility, 24 Davis Road, Wetherill Park, NSW

Prepared by: Senversa Pty Ltd

ABN: 89 132 231 380

Level 24, 1 Market St, Sydney, NSW 2000 tel: + 61 2 8252 0000; fax: + 61 3 9606 0074

www.senversa.com.au

Prepared for:

ReDirect Recycling 2 Wella Way

Somersby NSW 2250

| Revision | Date       | Author | Reviewed | Approved | Detail |
|----------|------------|--------|----------|----------|--------|
| 0        | 21/09/2023 | ВС     | AW       | AW       | Final  |

Project Manager: Bec Chapple
Project Director: Emma Walsh

#### **Disclaimer and Limitations:**

This document is confidential and has been prepared by Senversa for use only by its client and for the specific purpose described in our proposal which is subject to limitations. No party other than Senversa's client may rely on this document without the prior written consent of Senversa, and no responsibility is accepted for any damages suffered by any third party arising from decisions or actions based on this document. Matters of possible interest to third parties may not have been specifically addressed for the purposes of preparing this document and the use of professional judgement for the purposes of Senversa's work means that matters may have existed that would have been assessed differently on behalf of third parties.

Senversa prepared this document in a manner consistent with the level of care and skill ordinarily exercised by members of Senversa's profession practising in the same locality under similar circumstances at the time the services were performed.

Permission should be sought before any reference (written or otherwise) is made public that identifies any people, person, address or location named within or involved in the preparation of this report. Senversa requires that this document be considered only in its entirety and reserves the right to amend this report if further information becomes available. This document is issued subject to the technical principles, limitations and assumptions provided herein in **Section 5.0**.

#### © Senversa Pty Ltd 2021

Senversa acknowledges the traditional custodians of the land on which this work was created and pay our respect to Elders past and present.



# Contents

| 1.0   | Introduction and Objectives                 | 1 |
|-------|---------------------------------------------|---|
| 1.1   | Background                                  |   |
| 1.2   | Objectives                                  |   |
| 1.3   | Scope of Work                               |   |
| 2.0   | Monitoring Rationale and Methodology        | 2 |
| 2.1   | Monitoring Locations                        | 2 |
| 2.2   | Surface Water Monitoring Methodology        |   |
| 2.3   | Water Quality Assessment Criteria           |   |
| 2.4   | Deviations from the WMP                     | 3 |
| 3.0   | Results                                     | 4 |
| 3.1   | Site Inspection                             |   |
| 3.2   | Rainfall Prior to Sampling                  | 4 |
| 3.3   | Surface Water                               | 4 |
| 3.3.1 | Observations and Geochemical Parameters     |   |
| 3.4   | Analytical Results                          |   |
| 3.5   | Data Quality Review                         |   |
| 4.0   | Conclusions                                 |   |
| 5.0   | Principles and Limitations of Investigation | 8 |
| 6.0   | References                                  | 9 |



# Tables in Text

| Table 2-1: Monitoring Methodology                               | .2 |
|-----------------------------------------------------------------|----|
| Table 3-1: Rainfall prior to surface water monitoring events    | .4 |
| Table 3-2 Surface water observations and geochemical parameters | .5 |
| Table 3-3 Surface Water Analytical Summary                      | 5  |

# **Appendices**

**Figures** 

Tables

Appendix A: ReDirect Weekly Inspections

Appendix B: Field Records

Appendix C: Calibration Certificates

Appendix D: Data Validation

Appendix E: Laboratory Reports



# List of Acronyms

| Acronym | Definition                                     |
|---------|------------------------------------------------|
| ALS     | Australian Laboratory Services                 |
| ASC     | Assessment of Site Contamination               |
| вом     | Bureau of Meteorology                          |
| COA     | Conditions of Approval                         |
| CoPC    | Contaminant of Potential Concern               |
| DO      | Dissolved Oxygen                               |
| DQI     | Data Quality Indicators                        |
| DQO     | Data Quality Objectives                        |
| EC      | Electrical Conductivity                        |
| EPA     | Environment Protection Authority               |
| EPL     | Environmental Protection Licence               |
| FCC     | Fairfield City Council                         |
| IFM     | Oil/Water Interface Meter                      |
| LOR     | Limit of Reporting                             |
| m AHD   | Metres Australian Height Datum                 |
| m bgl   | Metres Below Ground Level                      |
| m btoc  | Metres Below Top of Casing                     |
| mg/L    | Milligrams per Litre                           |
| NATA    | National Association of Testing<br>Authorities |

| Acronym  | Definition                                           |
|----------|------------------------------------------------------|
| NSW      | New South Wales                                      |
| PAH      | Polycyclic Aromatic Hydrocarbons                     |
| POEO Act | Protection of the Environment<br>Operations Act 1997 |
| QA       | Quality Assurance                                    |
| QC       | Quality Control                                      |
| RPD      | Relative Percent Difference                          |
| SSD      | State Significant Development                        |
| SWL      | Standing Water Level                                 |
| TDS      | Total Dissolved Solids                               |
| TSS      | Total Suspended Solids                               |
| TN       | Total nitrogen                                       |
| ТР       | Total phosphorus                                     |
| ТРН      | Total Petroleum Hydrocarbons                         |
| TRH      | Total Recoverable Hydrocarbons                       |
| μg/L     | Micrograms per Litre                                 |
| WME      | Surface Water Monitoring Event                       |
| WMP      | Water Management Plan                                |
| WQM      | Water Quality Meter                                  |



# 1.0 Introduction and Objectives

Senversa Pty Ltd (Senversa) was engaged by reDirect Recycling Pty Ltd (reDirect) to conduct four biannual groundwater and surface water monitoring events (WME), along with associated reporting, over a two-year period at the reDirect Resource Recovery Facility located at 24 Davis Road, Wetherill Park, New South Wales (NSW) (the site). The site location and layout are presented on **Figure 1**.

This report documents surface water monitoring conducted in February and August 2023.

# 1.1 Background

A Water Management Plan (WMP) has previously been prepared for the site<sup>1</sup> and is currently being implemented in accordance with the operational environmental protection licence (EPL) 21092 issued by the NSW Environment Protection Authority (EPA). The facility commenced operation under EPL 21092 in August 2022.

The WMP outlines the initial requirement for six-monthly (bi-annual) monitoring of surface water and groundwater across and under the site for a two-year period following commencement of operations. The requirements for subsequent on-going monitoring will be determined based on the results from the initial two-year period.

The purpose of the two-year period of surface water monitoring is to assess the quality of stormwater collected on-site prior to treatment, as well as being discharged to the Council stormwater system, to assess whether the stormwater controls across the site are meeting their performance targets.

The existing monitoring network comprises six groundwater monitoring wells and two surface water sampling locations, as defined in the WMP.

The WMP requires annual reporting of surface water monitoring. This report represents the first annual surface water monitoring report under the WMP.

# 1.2 Objectives

The objectives of surface water monitoring are to:

- Verify whether surface water/stormwater controls are adequately maintained and performing to meet the performance targets set out in the SSD COA and FCC (2017) Stormwater Management Policy.
- Assess surface water/stormwater quality with respect to Condition L1.1 of EPL 21092.

# 1.3 Scope of Work

The scope of work was in accordance with the WMP and included the following:

- Ongoing inspections by redirect of the site areas outside of the covered and controlled processing areas (e.g. driveway, car park area, ramp) and all surface water sampling points and subsurface drains.
- Six-monthly (following a rainfall event) sampling of two sampling points on-site (SW1 in the sand filter and SW2 in the Ecoceptor outflow sampling point).
- Preparation of this report.

<sup>&</sup>lt;sup>1</sup> Senversa, 2022. Water Management Plan, reDirect Resource Recovery Facility – 24 Davis Road, Wetherill Park, NSW.



# 2.0 Monitoring Rationale and Methodology

# 2.1 Monitoring Locations

Monitoring locations included the following (refer **Figure 1**):

- General site areas outside of covered and controlled processing areas (e.g. driveway, car park area, ramp) (inspection only).
- Sand filter bed inflow sampling point (to assess quality of surface water across the site prior to treatment) SW1.
- Ecoceptor outflow sampling point (to assess quality of surface water across the site following treatment and prior to discharge from site) – SW2.

# 2.2 Surface Water Monitoring Methodology

The surface water assessment methodology is summarised below.

#### **Table 2-1: Monitoring Methodology**

#### Activity

#### **Details**

#### Inspection

Each week, ReDirect were responsible for conducting a site inspection in which they observed the general site areas outside of covered and controlled processing areas (e.g. driveway, car park area, ramp). These records are presented in **Appendix A**.

A quarterly inspection of all surface water sampling points and subsurface drain pits was conducted in December 2022, March 2023, June 2023 and September 2023. This included the following methodologies:

- Removal of the grate and inspection of the internal walls and base.
- Removal of any collected sediment, debris, litter and vegetation
- Inspection and ensuring the grate was clear following any removal of objects.
- Ensuring there was a flush placement of the grate upon refitment.
- Drainage structures were inspected noting any dilapidation, with repairs been carried out if necessary.
- Rainwater tanks were checked for evidence of litter and pests and the structural integrity of the tank was assessed.
- The sediment chamber for the Ecoceptor was checked and cleaned, with any damages repaired. These records are also presented in **Appendix A.**

#### Sampling

Sampling commenced after a period of rainfall, to ensure there was enough water to sample from the sampling locations. Rainfall data was monitored prior to each surface water sampling event. The rainfall data was collected from the Australian Bureau of Meteorology (BOM), measured from Prospect Reservoir (station 067019) 1 km north of the site.

Sampling was completed on the following dates:

- 10 February 2023.
- 14 August 2023.

Laboratory prepared and supplied bottles/vials were filled directly from the sampling location using an extendable sampling poll. A sub-sample was filtered using a 0.45 um filter in the field prior to placing into sample container for dissolved metals analysis. Vials and bottles were filled to minimise headspace and placed into an insulated cooler containing crushed ice.

A separate aliquot of water was collected for field measurement of general water quality parameters<sup>2</sup>. A new pair of nitrile gloves were worn for each sample collection event.

Sampling field records are presented in **Appendix B.** Calibration certificates for the equipment used during the field program at presented in **Appendix C.** 

<sup>&</sup>lt;sup>2</sup> pH, electrical conductivity (EC), dissolved oxygen (DO), redox potential and temperature.



#### **Activity**

#### **Details**

#### Sample Analytical Schedule

Samples were analysed at laboratories by methods endorsed by the National Association of Testing Authorities (NATA), including:

- ALS Environmental (ALS): analysis of primary surface water samples.
- Envirolab: Analysis of February inter-laboratory duplicate sample.
- Eurofins: Analysis of August interlaboratory duplicate sample.

Surface water samples were analysed for constituents required by the WMP: pH, total dissolved solids (TDS), total suspended solids (TSS), total nitrogen (TN), total phosphorus (TP), dissolved metals, total petroleum hydrocarbons (TPH), polycyclic aromatic hydrocarbons (PAH) and phenols.

Quality assurance Data quality assurance (QA) and quality control (QC) procedures consistent with the guidance in the and quality control WMP were implemented including (refer Appendix D):

- Field QA procedures: Inspections were conducted by suitably experienced persons familiar with the site operations; water sampling was conducted by suitable trained and experienced persons; dedicated sampling equipment was used; field and equipment calibration records were retained.
- Field QC samples: One rinsate, one trip-blank and one trip spike were analysed per sampling event. The surface water and groundwater monitoring were undertaken during the one mobilisation in each event. As such, the QA/QC samples including one intra-laboratory duplicate and one inter-laboratory duplicate from each event were sampled from a primary groundwater sample (reported separately).
- Laboratory QA/QC procedures and controls were implemented refer Appendix D.

The data validation process involved checking both the analytical procedure compliance, as well as the accuracy and precision of the sampling methods used throughout the sampling program (refer Appendix D).

# 2.3 Water Quality Assessment Criteria

Condition L1 of the EPL states that the licensee must comply with section 120 of the POEO Act, which prohibits the pollution of waters. Stormwater quality should also meet FCC stormwater quality, discharge requirements or approval conditions.

In the absence of any EPL or FCC criteria, the WMP adopted site-specific risk-based screening criteria from NSW EPA made or approved guidance appropriate for the commercial/industrial land use and heavily disturbed receiving environment. These include (refer Table 1 for criteria values):

- Health risk screening: Direct contact exposure based on guidelines adopted from National Health and Medical Research Council (NHMRC) (2011), Australian Drinking Water Guidelines and NHMRC (2008) Guidelines for Managing Risks in Recreational Water for recreational exposure. This is also conservative for incidental exposure to workers.
- Ecological risk screening: ANZG (2018) Australian and New Zealand Guidelines for Fresh and Marine Water Quality for heavily disturbed environments. Surface water that discharges the site may migrate and discharge into Prospect Creek, which is the nearest surface water body downstream of the site, though the ultimate receiving environment is the George's River and Botany Bay (marine). The WMP indicates previous studies found that the local receiving waterways are heavily disturbed. The relevant ecological guidelines for toxicants, are therefore, the freshwater default guidelines values for heavily disturbed environments from ANZG (2018).
- Aesthetic impacts e.g. no gross aesthetic impacts such as non-aqueous phase liquids.

#### 2.4 Deviations from the WMP

There were no material deviations from the surface water management plan requirements in the WMP.



# 3.0 Results

# 3.1 Site Inspection

The following key observations were made during quarterly inspections of the surface water sampling points and subsurface drain pits in December 2022, March 2023, June 2023 and September 2023:

- The grates were cleaned when observations indicated that sediment was present and debris was removed when necessary.
- The sediment chamber of the Ecoceptor was checked during each quarterly observation, with no further action required on each occasion.
- No repairs were required for the surface water and stormwater drain structures.
- The rainwater tank was clear of pests and debris on each occasion, with no repairs required.

### 3.2 Rainfall Prior to Sampling

The surface water sampling events were targeted to follow a rainfall event. **Table 3-2** outlines the rainfall that occurred in the 3-day period prior to each monitoring event.

Rainfall data was monitored prior to each surface water sampling event. The following rainfall data was collected from the Australian Bureau of Meteorology (BOM), measured from Prospect Reservoir (station 067019) 1 km north of the site.

Table 3-1: Rainfall prior to surface water monitoring events

| Date             | 24-hour Rainfall (including day of sampling) | 3-Day Rainfall<br>(including day of sampling) |
|------------------|----------------------------------------------|-----------------------------------------------|
| 10 February 2023 | 0 mm                                         | 10 mm                                         |
| 14 August 2023   | 14 mm                                        | 14 mm                                         |

#### 3.3 Surface Water

#### 3.3.1 Observations and Geochemical Parameters

The field-measured surface water geochemical parameters for the sampling events are presented in the table below.



Table 3-2 Surface water observations and geochemical parameters

| Event/Location     | Dissolved<br>Oxygen (mg/L) | Electrical Conductivity (µs/cm) | рΗ  | Redox<br>(Eh) (mV) | Temperature (°C) | Observations                                       |
|--------------------|----------------------------|---------------------------------|-----|--------------------|------------------|----------------------------------------------------|
| February –<br>SW01 | 4.23                       | 196                             | 7.5 | 220                | 21.8             | light brown, no odour, no sheen, moderately turbid |
| August –<br>SW01   | 8.55                       | 719                             | 8.4 | 81                 | 14.0             | light brown, no odour, no sheen, moderately turbid |
| February –<br>SW02 | 3.85                       | 366                             | 7.0 | 215                | 22.2             | pale brown, no odour, no sheen, moderately turbid  |
| August –<br>SW02   | 8.45                       | 650                             | 8.9 | 62                 | 12.8             | white, no odour, no<br>sheen, slightly turbid      |

Limited volume of water was available for sampling during the February event due to a light rainfall event. Limited volume of water was available for sampling at SW1 during the August event.

# 3.4 Analytical Results

The surface water sample analytical results and screening against adopted assessment criteria are provided in **Table 1**. The laboratory analysis reports (**Appendix E**) contain all analysis results.

A summary of exceedances of water quality objectives is provided in the table below.

**Table 3-3 Surface Water Analytical Summary** 

| Analyte / Value  Heavy             | Screening Criteria Exceedances |                                                                                                                                                                                                                                                                                                    |                    | Comment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
|------------------------------------|--------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                    | Health-Risk                    | Ecological Risk                                                                                                                                                                                                                                                                                    | Aesthetics         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|                                    | None<br>identified             | Heavy metal concentrations were reported at low levels less than relevant screening criteria for highly disturbed environments with the exceptions of:  Copper (at SW1, and SW2 in February 2023).  Zinc (SW2 in August 2023). The average concentration (0.012 mg/L) was less than the criterion. | -                  | Metals concentrations were generally less than or similar to relevant screening criteria for disturbed ecosystems consistent with the WMP.  Copper concentrations reported were slightly elevated above screening criteria at SW1 – this represents water prior to on-site treatment via the sand filter. The average concentration at SW2 (Ecoceptor outflow point) (0.002 mg/L) was lower and equivalent to the criterion (0.0018 mg/L).  The reported zinc concentration at SW2 in August 2023 was elevated (an order of magnitude) above other sample results – the cause for this is unclear and quality should be reviewed following further monitoring under the WMP. |  |
| Nutrients                          | None<br>identified             |                                                                                                                                                                                                                                                                                                    |                    | Concentrations are similar or less than median values for TN (1.7 mg/L) and TP (0.31 mg/L) in stormwater runoff in urban or commercial/ industria areas in east coast Australia reported by Drapper al (2022) and Fletcher et al (2004).                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| Organic<br>CoPC                    | None<br>identified             | None identified                                                                                                                                                                                                                                                                                    | -                  | TRH, BTEX, PAHs were not detected in water samples.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| Physico-<br>chemical<br>Parameters | None<br>identified             | None identified                                                                                                                                                                                                                                                                                    | None<br>identified | TSS ranged from 39 to 238 mg/L.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |



There are indications that concentrations of key parameters (TN, TP, TSS) are lower at SW2 (downstream of treatment train) than SW1 (upstream of system). However, further monitoring as required by the WMP is needed to assess performance of the treatment system(s) – this should be evaluated in the next annual report. The water, sediment and erosion controls in the WMP should continue to be followed to minimise migration of sediments and fines into the stormwater system.

### 3.5 Data Quality Review

A review of the sampling and laboratory QA/QC data completed by Senversa is presented in **Appendix D**. The QA/QC review indicated that results are generally within the relevant data quality indicator acceptance criteria for the analyses conducted and that any identified non-conformances are unlikely to affect the suitability of the data set for the purposes of this investigation. The quality of the analytical data is considered reliable for the purpose of this investigation.



### 4.0 Conclusions

Based on the available data and with respect to the objectives, the following conclusions are made:

### Compliance with WMP:

Surface water monitoring was conducted consistent with requirements in the WMP during the period.

Ensure surface water/stormwater controls are adequately maintained and performing to meet the performance targets set out in the SSD COA and FCC (2017) Stormwater Management Policy:

No repairs were identified to be required. The weekly inspections reported that there were no outstanding factors that needed addressing during the monitoring period.

### Assess surface water/stormwater quality with respect to Condition L1.1 of EPL 21092:

- All analytes were either not detected or reported at low concentrations less than health-based criteria.
- Concentrations of certain metals and nutrients above conservative ecological screening criteria
  were reported in surface water samples upstream of the sand filter (SW1), with lower
  concentrations generally reported downstream at the Ecoceptor discharge point (SW2). Average
  concentrations of metals were similar to or less than the adopted assessment criteria. The
  concentrations of nutrients at SW2 are considered to be similar to water quality in stormwater
  runoff in east coast Australia published in the literature.
- The reported zinc concentration at SW2 in August 2023 was elevated (an order of magnitude) above other sample results – the cause for this is unclear and water quality should be reviewed following further monitoring under the WMP.

Ongoing environmental management under the WMP, including system maintenance and sediment and erosion controls, should be conducted to mitigate potential impacts to surface water and monitor system performance.



### 5.0 Principles and Limitations of Investigation

The following principles are an integral part of site contamination assessment practices and are intended to be referred to in resolving any ambiguity or exercising such discretion as is accorded the user or site assessor.

#### Area

#### Uncertainties and Limitations

#### Elimination of Uncertainty

Some uncertainty is inherent in all site investigations. Furthermore, any sample, either surface or subsurface, taken for chemical testing may or may not be representative of a larger population or area. Professional judgment and interpretation are inherent in the process, and even when exercised in accordance with objective scientific principles, uncertainty is inevitable. Additional assessment beyond that which was reasonably undertaken may reduce the uncertainty.

#### **Failure to Detect**

Even when site investigation work is executed competently and in accordance with the appropriate Australian guidance, such as the National Environment Protection (Assessment of Site Contamination) Amendment Measure ('the NEPM'), it must be recognised that certain conditions present especially difficult target analyte detection problems. Such conditions may include, but are not limited to, complex geological settings, unusual or generally poorly understood behaviour and fate characteristics of certain substances, complex, discontinuous, random, or heterogeneous distributions of existing target analytes, physical impediments to investigation imposed by the location of services, structures and other man-made objects, and the inherent limitations of assessment technologies.

#### Limitations of Information

The effectiveness of any site investigation may be compromised by limitations or defects in the information used to define the objectives and scope of the investigation, including inability to obtain information concerning historic site uses or prior site assessment activities despite the efforts of the user and assessor to obtain such information.

#### **Chemical Analysis Error**

Chemical testing methods have inherent uncertainties and limitations. Serversa routinely seeks to require the laboratory to report any potential or actual problems experienced, or non-routine events which may have occurred during the testing, so that such problems can be considered in evaluating

Level of Assessment The investigation herein should not be considered to be an exhaustive assessment of environmental conditions on a property. There is a point at which the effort of information obtained and the time required to obtain it outweigh the benefit of the information gained and, in the context of private transactions and contractual responsibilities, may become a material detriment to the orderly conduct of business. If the presence of target analytes is confirmed on a property, the extent of further assessment is a function of the degree of confidence required and the degree of uncertainty acceptable in relation to the objectives of the assessment.

### Comparison with **Subsequent Inquiry**

The justification and adequacy of the investigation findings in light of the findings of a subsequent inquiry should be evaluated based on the reasonableness of judgments made at the time and under the circumstances in which they were made.

#### **Data Useability**

Investigation data generally only represent the site conditions at the time the data were generated. Therefore, the usability of data collected as part of this investigation may have a finite lifetime depending on the application and use being made of the data. In all respects, a future reader of this report should evaluate whether previously generated data are appropriate for any subsequent use beyond the original purpose for which they were collected or are otherwise subject to lifetime limits imposed by other laws, regulations or regulatory policies.

#### **Nature of Advice**

The investigation works herein are intended to develop and present sound, scientifically valid data concerning actual site conditions. Senversa does not seek or purport to provide legal or business advice.



### 6.0 References

ANZG (2018) Australian and New Zealand Guidelines for Fresh and Marine Water Quality for heavily disturbed environments.

Drapper D, Olive K, McAlister T, Coleman R, Lampard J-L (2022) *A Review of Pollutant Concentrations in Urban Stormwater Across Eastern Australia, After 20 Years*. Front. Environ. Chem. 3:853764.

Fletcher T., Duncan H., Poelsma P., Lloyd S. (2004). *Stormwater Flow and Quality, and the Effectiveness of Non-Proprietary Stormwater Treatment Measures: A Review and Gap Analysis*. Cooperative Research Centre for Catchment Hydrology, Technical Report 04/8, December 2004.

National Environment Protection Council. 1999. National Environment Protection Measure (NEPM), Assessment of Site Contamination (ASC), as amended 2013 (ASC NEPM 2013).

NSW EPA, 2020. Contaminated Land Guidelines: Consultants Reporting on Contaminated Land. April 2020, updated 5 May 2020.

Primary contact recreation (PCR) guidelines adopted from National Health and Medical Research Council (NHMRC) (2011), Australian Drinking Water Guidelines and NHMRC (2008) Guidelines for Managing Risks in Recreational Water.

Protection of the Environment Operations (Underground Petroleum Storage Systems) Regulation 2019 (UPSS Regulation).

Senversa, 2022. Water Management Plan reDirect Resource Recovery Facility – 24 Davis Road, Wetherill Park NSW, 5 April 2022.



### Figures

Figure 1: Sampling Locations (after WMP)



Notes: Aerial Imagery (17/10/2021) © Nearmap



◆ Proposed Groundwater Monitoring Well
 ⊗ Surface Water Sample

Inferred Groundwater Flow Direction

| Created:                                                               | T. S | ohi   |     | Date: |          | 5/04/2022    | Figure    |
|------------------------------------------------------------------------|------|-------|-----|-------|----------|--------------|-----------|
| Reviewed:                                                              | М.   | Coles | - 1 | Revis | ion:     | 0            | Title:    |
| Approved:                                                              | E. V | Valsh |     | Scale |          | 1:1,000 (A3) |           |
| File: S19355_002_F002_Surface Water and Groundwater Sampling Locations |      |       |     |       | Project: |              |           |
|                                                                        | 0 5  | 10    | 20  | 30    | 40       | 50           | Location: |

Coordinate System: GDA 1994 MGA Zone 56

Title:

**Proposed Surface Water and Groundwater Sampling Locations** 

Water Management Plan

24 Davis Road, Wetherill Park NSW

Space Urban



### Tables

Table 1: 2023 Surface Water Analytical Results



|                                                        |              |            |                                                                       |                                                                                          |                                                                                | Field ID                                                 | SW1          | SW1          | SW2          | SW2          |
|--------------------------------------------------------|--------------|------------|-----------------------------------------------------------------------|------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|----------------------------------------------------------|--------------|--------------|--------------|--------------|
|                                                        |              |            |                                                                       |                                                                                          |                                                                                | Date Commission Turns                                    | 10/02/2023   | 14/08/2023   | 10/02/2023   | 14/08/202    |
|                                                        |              |            |                                                                       |                                                                                          |                                                                                | Sample Type                                              | Normal       | Normal       | Normal       | Normal       |
|                                                        | Unit         | EQL        | Aquatic ecosystems<br>DGV - highly<br>disturbed (90%) -<br>freshwater | Aquatic ecosystems<br>DGV - slightly to<br>moderately<br>disturbed (95%) -<br>freshwater | ANZECC 2000 -<br>physical stressors -<br>South-east Australia<br>Lowland River | NHMRC<br>(2008)Primary<br>Contact Recreation -<br>Health | ES2304342    | ES2327328    | ES2304342    | ES232732     |
| hysical Parameters                                     |              | 1          |                                                                       | ilesiiwatei                                                                              |                                                                                |                                                          |              | l            |              |              |
| Total Dissolved Solids                                 | mg/L         | 10         |                                                                       |                                                                                          |                                                                                |                                                          | 240          | 316          | 352          | 105          |
| Total Suspended Solids                                 | mg/L         | 5          |                                                                       |                                                                                          |                                                                                |                                                          | 86           | 238          | 69           | 39           |
| pH (Lab)                                               | pH Units     | 0.01       |                                                                       |                                                                                          | 6.5-8.0                                                                        | 6.5-8.5 <sup>#13</sup>                                   | -            | 8.03         | -            | 7.75         |
| organics                                               | /1           | 0.04       |                                                                       |                                                                                          | 0.04                                                                           |                                                          | 2.22         | 0.00         | 2.5          | 2.22         |
| Total Oxidised Nitrogen (as N) Total Kjeldahl Nitrogen | mg/L<br>mg/L | 0.01       |                                                                       |                                                                                          | 0.04                                                                           |                                                          | 0.36         | 0.68<br>1.7  | 0.5          | 0.62         |
| Total Nitrogen (as N)                                  | mg/L         | 0.1        |                                                                       |                                                                                          | 0.35                                                                           |                                                          | 0.3          | 2.4          | 1.5          | 1.3          |
| Phosphorus (as P)                                      | mg/L         | 0.01       |                                                                       |                                                                                          | 0.025                                                                          |                                                          | 0.06         | 0.35         | 0.19         | 0.09         |
| letals                                                 |              |            |                                                                       |                                                                                          |                                                                                |                                                          |              |              |              |              |
| Arsenic (filtered)                                     | mg/L         | 0.001      | 0.042 <sup>#3</sup>                                                   | 0.013 <sup>#3</sup>                                                                      |                                                                                | 0.1 <sup>#14</sup>                                       | 0.001        | 0.001        | <0.001       | < 0.001      |
| Cadmium (filtered)                                     | mg/L         | 0.0001     | 0.0004#4                                                              | 0.0002 <sup>#4</sup>                                                                     |                                                                                | 0.02 #14                                                 | < 0.0001     | <0.0001      | <0.0001      | < 0.0001     |
| Chromium (filtered)                                    | mg/L         | 0.001      | 0.0033 <sup>#12</sup>                                                 | 0.001 <sup>#5</sup>                                                                      |                                                                                | 0.5 <sup>#15</sup>                                       | 0.002        | 0.001        | 0.002        | < 0.001      |
| Copper (filtered)                                      | mg/L         | 0.001      | 0.0018 <sup>#6</sup>                                                  | 0.0014 <sup>#6</sup>                                                                     |                                                                                | 20 <sup>#14</sup>                                        | 0.006        | 0.004        | 0.003        | 0.001        |
| Iron (filtered)                                        | mg/L         | 0.05       |                                                                       |                                                                                          |                                                                                | 140 <sup>#16</sup>                                       | 0.06         | <0.05        | 0.06         | < 0.05       |
| Lead (filtered)                                        | mg/L         | 0.001      | 0.0056#4                                                              | 0.0034#4                                                                                 |                                                                                | 0.1 <sup>#14</sup>                                       | < 0.001      | <0.001       | < 0.001      | < 0.001      |
| Manganese (filtered)                                   | mg/L         | 0.001      | 2.5 <sup>#6</sup>                                                     | 1.9 <sup>#6</sup>                                                                        |                                                                                | 5 <sup>#14</sup>                                         | 0.01         | 0.016        | < 0.01       | 0.007        |
| Mercury (filtered)                                     | mg/L         | 0.0001     | 0.0006 <sup>#7</sup>                                                  | 0.00006 <sup>#7</sup>                                                                    |                                                                                | 0.01 #14                                                 | < 0.0001     | <0.0001      | < 0.0001     | < 0.0001     |
| Nickel (filtered)                                      | mg/L         | 0.001      | 0.013 <sup>#4</sup>                                                   | 0.011#4                                                                                  |                                                                                | 0.2 <sup>#14</sup>                                       | 0.001        | <0.001       | 0.001        | < 0.001      |
| Zinc (filtered)                                        | mg/L         | 0.005      | 0.015 <sup>#4</sup>                                                   | 0.008#4                                                                                  |                                                                                | 60 <sup>#16</sup>                                        | < 0.005      | 0.005        | <0.005       | 0.038        |
| TEX                                                    |              |            |                                                                       |                                                                                          |                                                                                |                                                          |              |              |              |              |
| Benzene                                                | μg/L         | 1          | 1,300 <sup>#6</sup>                                                   | 950 <sup>#6</sup>                                                                        |                                                                                | 10 <sup>#14</sup>                                        | <1           | <1           | <1           | <1           |
| Toluene                                                | μg/L         | 2          | 230 <sup>#6</sup>                                                     | 180 <sup>#6</sup>                                                                        |                                                                                | 8,000 #14                                                | <2           | <2           | <2           | <2           |
| Ethylbenzene                                           | μg/L         | 2          | 110 <sup>#6</sup>                                                     | 80 <sup>#6</sup>                                                                         |                                                                                | 3,000 #14                                                | <2           | <2           | <2           | <2           |
| Xylene (m & p)                                         | μg/L         | 2          |                                                                       |                                                                                          |                                                                                | ·                                                        | <2           | <2           | <2           | <2           |
| Xylene (o)                                             | μg/L         | 2          | 470 <sup>#6</sup>                                                     | 350 <sup>#6</sup>                                                                        |                                                                                |                                                          | <2           | <2           | <2           | <2           |
| Total Xylene                                           | μg/L         | 2          |                                                                       |                                                                                          |                                                                                | 6,000 #14                                                | <2           | <2           | <2           | <2           |
| Total BTEX                                             | μg/L         | 1          |                                                                       |                                                                                          |                                                                                | ·                                                        | <1           | <1           | <1           | <1           |
| otal Petroleum Hydrocarbons                            |              |            |                                                                       |                                                                                          |                                                                                |                                                          |              |              |              |              |
| C6-C9 Fraction                                         | μg/L         | 20         |                                                                       |                                                                                          |                                                                                |                                                          | <20          | <20          | <20          | <20          |
| C10-C14 Fraction                                       | μg/L         | 50         |                                                                       |                                                                                          |                                                                                |                                                          | <50          | <50          | <50          | <50          |
| C15-C28 Fraction                                       | μg/L         | 100        |                                                                       |                                                                                          |                                                                                |                                                          | <100         | <100         | <100         | <100         |
| C29-C36 Fraction                                       | μg/L         | 50         |                                                                       |                                                                                          |                                                                                |                                                          | <50          | <50          | <50          | <50          |
| C10-C36 Fraction (Sum)                                 | μg/L         | 50         |                                                                       |                                                                                          |                                                                                |                                                          | <50          | <50          | <50          | <50          |
| otal Recoverable Hydrocarbons C6-C10 Fraction          | ua/l         | 20         |                                                                       |                                                                                          |                                                                                |                                                          | <20          | <20          | <20          | <20          |
| C6-C10 Fraction C6-C10 Fraction minus BTEX (F1)        | μg/L         |            | 440 <sup>#8</sup>                                                     | 440 <sup>#8</sup>                                                                        |                                                                                | 900 #17                                                  |              |              |              |              |
| >C10-C16 Fraction                                      | μg/L<br>μg/L | 20<br>100  | 440                                                                   | 440                                                                                      |                                                                                | 900                                                      | <20<br><100  | <20<br><100  | <20<br><100  | <20<br><100  |
| >C10-C16 Fraction minus naphthalene (F2)               | μg/L         | 100        | 440 <sup>#8</sup>                                                     | 440#8                                                                                    |                                                                                | 900 #17                                                  | <100         | <100         | <100         | <100         |
| >C16-C34 Fraction                                      | μg/L         | 100        | 640 <sup>#9</sup>                                                     | 640 <sup>#9</sup>                                                                        |                                                                                | 900 #18                                                  | <100         | <100         | <100         | <100         |
| >C34-C40 Fraction                                      |              | _          | 640 <sup>#10</sup>                                                    | 640 <sup>#10</sup>                                                                       |                                                                                | 900 #18                                                  |              |              |              |              |
| >C10-C40 Fraction (Sum)                                | μg/L<br>μg/L | 100<br>100 | 040                                                                   | 040                                                                                      |                                                                                | 900                                                      | <100<br><100 | <100<br><100 | <100<br><100 | <100<br><100 |
| AHs                                                    | P9/L         | 100        |                                                                       |                                                                                          |                                                                                |                                                          | <100         | <100         | <100         | 100          |
| Acenaphthene                                           | μg/L         | 1          |                                                                       |                                                                                          |                                                                                | 5,350 <sup>#16</sup>                                     | <1.0         | <1.0         | <1.0         | <1.0         |
| Acenaphthylene                                         | μg/L         | 1          |                                                                       |                                                                                          |                                                                                | 0,000                                                    | <1.0         | <1.0         | <1.0         | <1.0         |
| Anthracene                                             | μg/L         | 1          | 0.4 <sup>#7</sup>                                                     | 0.01 <sup>#7</sup>                                                                       |                                                                                | 17,700 <sup>#16</sup>                                    | <1.0         | <1.0         | <1.0         | <1.0         |
| Benz(a)anthracene                                      | μg/L         | 1 1        | <b></b>                                                               |                                                                                          |                                                                                | ,                                                        | <1.0         | <1.0         | <1.0         | <1.0         |
| Benzo(a)pyrene                                         | μg/L         | 0.5        | 0.2 <sup>#7</sup>                                                     | 0.1 <sup>#7</sup>                                                                        |                                                                                | 0.1 #14                                                  | <0.5         | <0.5         | <0.5         | <0.5         |
| Benzo(b+j)fluoranthene                                 | μg/L         | 1          |                                                                       |                                                                                          |                                                                                |                                                          | <1.0         | <1.0         | <1.0         | <1.0         |
| Benzo(g,h,i)perylene                                   | μg/L         | 1          |                                                                       |                                                                                          |                                                                                |                                                          | <1.0         | <1.0         | <1.0         | <1.0         |
| Benzo(k)fluoranthene                                   | μg/L         | 1          |                                                                       |                                                                                          |                                                                                |                                                          | <1.0         | <1.0         | <1.0         | <1.0         |
| Chrysene                                               | μg/L         | 1          |                                                                       |                                                                                          |                                                                                |                                                          | <1.0         | <1.0         | <1.0         | <1.0         |
| Dibenz(a,h)anthracene                                  | μg/L         | 1          |                                                                       |                                                                                          |                                                                                |                                                          | <1.0         | <1.0         | <1.0         | <1.0         |
| Fluoranthene                                           | μg/L         | 1          | 1.4 <sup>#7</sup>                                                     | 1 <sup>#7</sup>                                                                          |                                                                                | 8,020 #16                                                | <1.0         | <1.0         | <1.0         | <1.0         |
| Fluorene                                               | μg/L         | 1          |                                                                       |                                                                                          |                                                                                | 2,940 <sup>#16</sup>                                     | <1.0         | <1.0         | <1.0         | <1.0         |
| Indeno(1,2,3-c,d)pyrene                                | μg/L         | 1          | 110                                                                   |                                                                                          |                                                                                |                                                          | <1.0         | <1.0         | <1.0         | <1.0         |
| Naphthalene                                            | μg/L         | 1          | 37 <sup>#6</sup>                                                      | 16 <sup>#6</sup>                                                                         |                                                                                | 700 <sup>#19</sup>                                       | <1.0         | <1.0         | <1.0         | <1.0         |
| Phenanthrene                                           | μg/L         | 1          | 2 <sup>#7</sup>                                                       | 0.6 <sup>#7</sup>                                                                        |                                                                                |                                                          | <1.0         | <1.0         | <1.0         | <1.0         |
| Pyrene                                                 | μg/L         | 1          |                                                                       |                                                                                          |                                                                                | 1,210 <sup>#16</sup>                                     | <1.0         | <1.0         | <1.0         | <1.0         |
| Benzo(a)pyrene TEQ (Zero)                              | μg/L         | 0.5        |                                                                       |                                                                                          |                                                                                | 0.1 <sup>#20</sup>                                       | <0.5         | <0.5         | <0.5         | < 0.5        |
|                                                        |              |            |                                                                       |                                                                                          |                                                                                |                                                          |              |              |              |              |
| Sum of Polycyclic aromatic hydrocarbons (PAH)          | μg/L         | 0.5        |                                                                       |                                                                                          |                                                                                |                                                          | <0.5         | <0.5         | <0.5         | <0.5         |
| henols                                                 |              |            |                                                                       |                                                                                          |                                                                                | 2 #16                                                    | _            |              |              |              |
| 2-Methylphenol                                         | μg/L         | 1          |                                                                       |                                                                                          |                                                                                | 9,260 #16                                                | <1.0         | <1.0         | <1.0         | <1.0         |
| 2-Nitrophenol                                          | μg/L         | 1          | <b>a</b> #11                                                          | _#11                                                                                     |                                                                                | Q == 0 #16                                               | <1.0         | <1.0         | <1.0         | <1.0         |
| 2,4-Dimethylphenol                                     | μg/L         | 1 1        | 2 <sup>#11</sup>                                                      | 2 <sup>#11</sup>                                                                         |                                                                                | 3,550 <sup>#16</sup>                                     | <1.0         | <1.0         | <1.0         | <1.0         |
| 3-&4-Methylphenol (m&p-cresol)                         | μg/L         | 2          |                                                                       |                                                                                          |                                                                                | 4. = - #16                                               | <2.0         | <2.0         | <2.0         | <2.0         |
| 4-Chloro-3-methylphenol                                | μg/L         | 1          | #6                                                                    | #6                                                                                       |                                                                                | 14,500 <sup>#16</sup>                                    | <1.0         | <1.0         | <1.0         | <1.0         |
| Phenol                                                 | μg/L         | 1          | 600 <sup>#6</sup>                                                     | 320 <sup>#6</sup>                                                                        |                                                                                | 57,700 <sup>#16</sup>                                    | <1.0         | <1.0         | <1.0         | <1.0         |
| alogenated Phenois                                     |              | <u> </u>   |                                                                       |                                                                                          |                                                                                | #16                                                      |              |              |              |              |
| 2,4,5-Trichlorophenol                                  | μg/L         | 1          | #7                                                                    | #7                                                                                       |                                                                                | 11,800 <sup>#16</sup>                                    | <1.0         | <1.0         | <1.0         | <1.0         |
| 2,4,6-Trichlorophenol                                  | μg/L         | 1          | 20 <sup>#7</sup>                                                      | 3 <sup>#7</sup>                                                                          |                                                                                | 200 #14                                                  | <1.0         | <1.0         | <1.0         | <1.0         |
| 2,4-Dichlorophenol                                     | μg/L         | 1          | 160 <sup>#7</sup>                                                     | 120 <sup>#7</sup>                                                                        | 4                                                                              | 2,000 #14                                                | <1.0         | <1.0         | <1.0         | <1.0         |
| 2,6-Dichlorophenol                                     | μg/L         | 1          | 34 <sup>#11</sup>                                                     | 34 <sup>#11</sup>                                                                        |                                                                                |                                                          | <1.0         | <1.0         | <1.0         | <1.0         |
| 2-Chlorophenol                                         | μg/L         | 1          | 490 <sup>#7</sup>                                                     | 340 <sup>#7</sup>                                                                        |                                                                                | 3,000 #14                                                | <1.0         | <1.0         | <1.0         | <1.0         |
| 2-Oniorophichor                                        | 1-3          | <u> </u>   | 10 <sup>#7</sup>                                                      | 3.6 <sup>#7</sup>                                                                        |                                                                                | 100 #14                                                  |              |              |              |              |

Location Code

SW1

SW1

SW2

SW2

### Comments

- #1 <0.2–1.8, varies with hardness
- #2 <1–7, varies with hardness
- #3 ANZG (2018). The more conservative value (Arsenic AsV) out of the available arsenic species was adopted for initial screening purposes.
- #4 ANZG (2018). Adjust DGVs for site-specific hardness using the hardness-dependent algorithm in Warne et al. (2018) #5 ANZG (2018). The more conservative value (Chromium CrVI) out of the available chromium species was adopted for initial screening purposes.
- #6 ANZG (2018)
- #7 ANZG (2018). Higher species protection level adopted as recommended
- #8 CRWB (2019). Lowest of values for gasoline (C4-C12) and diesel (C8-C21) range hydrocarbons.
- #9 CRWB (2019). Value for diesel (C8-C21) mixture.
- #10 CRWB (2019). Value for diesel (C8-C21) mixture. No value derived for TPH >C21 as not considered soluble; diesel value used for screening. #11 ANZG (2018). Unknown species protection level
- #12 ANZG (2018). The more conservative value (Chromium CrIII) out of the available chromium species was adopted for initial screening purposes.
- #13 NHMRC (2008) #14 NHMRC (2011) - Health. Multiplied by a factor of x10
- #15 NHMRC (2011) Health. Guideline for Cr (VI) conservatively adopted for comparision to total chromium. Speciated analysis should be undertaken where guideline is exceeded. Multiplied by a factor of x10 #16 USEPA Tap Water RSL (TR=1E-06; THQ=0.1). Multiplied by a factor of x10
- #17 WHO (2008). Lowest derived value for aliphatic and aromatic fractions in this range. Multiplied by a factor of x10
- #18 Lowest derived value for aliphatic and aromatic fractions in this range (90 ug/L). Multiplied by a factor of x10 #19 NHMRC (2011) - Health. Derived as per NHMRC (2011) based on TDI used for NEPM HSL derivation. Multiplied by a factor of x10
- #20 NHMRC (2011) Health. Value is for BaP but applies to TEQ. Multiplied by a factor of x10

### Appendix A: ReDirect Weekly Inspections





| Location:                | reDirect – Wetherill Park | Date:      | 28.10.22      |
|--------------------------|---------------------------|------------|---------------|
| Inspection Completed By: | M.Stewart                 | Signature: | M. P. Stewart |

| 1. Ge | neral Management and mitigations                                                     | Frequency   | Y/N/NA | General Comments |
|-------|--------------------------------------------------------------------------------------|-------------|--------|------------------|
| 1.2   | Employees and contractors have been inducted and are suitably trained.               | As required | Υ      |                  |
| 1.3   | Plant and equipment being used is in good working condition at the start of the day? | Daily       | Y      |                  |

| 2. Tra | ffic mitigations                                                                            | Frequency | Y/N/NA | <b>General Comments</b> |
|--------|---------------------------------------------------------------------------------------------|-----------|--------|-------------------------|
| 2.1    | Traffic is continually monitored by Operations Coordinator?                                 | Daily     | Υ      |                         |
| 2.2    | AllI car spaces are free from obstruction and maintained for use by employees and visitors? | Daily     | Υ      |                         |
| 2.3    | Vehicles are entering and leaving the site in forward direction.                            | Daily     | Υ      |                         |

| 3. Aiı | quality, odour and dust mitigations  \[ \sum N/A \]                                                      | Frequency | Y/N/NA | General Comments |
|--------|----------------------------------------------------------------------------------------------------------|-----------|--------|------------------|
| 3.1    | Good dust management procedures are being implemented (inside building): Sweeper working and being used? | Daily     | Υ      |                  |
| 3.2    | Good dust management procedures are implemented (outside the building): Sweeper working and being used?  | Daily     | Υ      |                  |
| 3.3    | Residual waste has been transported offsite (check general waste bin capacity)?                          | Daily     | Υ      |                  |

| 5. Sto | rmwater mitigations                                                                                                                                                                                                                 | Frequency                            | Y/N/NA | <b>General Comments</b> |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--------|-------------------------|
| 5.1    | Are there any spills that have been left unattended?                                                                                                                                                                                | Daily                                | N      |                         |
| 5.2    | Have storm water drains been inspected for any build up of sediment, debris, litter and vegetation within drainage system?                                                                                                          | Monthly                              | Υ      |                         |
| 5.3    | If materials identified in stormwater drains, has it been removed?                                                                                                                                                                  | Monthly                              | N/A    |                         |
| 5.4    | Inflow areas and pit grates have been inspected and clear of litter / debris?                                                                                                                                                       | Monthly                              | Y      |                         |
| 5.5    | Ensure downpipe leaf eaters, first flush devices and litter screens are unblocked and are operating correctly.                                                                                                                      | Monthly                              | Y      |                         |
| 5.6    | Site structires to be regularly checked for erosion and scouring                                                                                                                                                                    | Monthly                              | Y      |                         |
| 5.7    | Treatment areas and structures will be regularly checked for the build up of litter material                                                                                                                                        | Monthly                              | Y      |                         |
| 5.8    | Remove grate and inspect internal walls and base. Remove any collected sediment, debris, litter and vegetation. Inspect and ensure grate is clear following any removal of objects. Ensure flush placement of grate upon refitment. | Quarterly<br>(Mar, Jun,<br>Sep, Dec) | Y      |                         |
| 5.9    | Have all drainage structures been inspected noting any dilapidation, if so have repairs been carried out?                                                                                                                           | Bi-<br>annually<br>(Jun, Dec)        | N/A    |                         |

| Document Title: WORKPLACE INSPECTION CHECKLIST - PERIODIC |              |          |              |                       |              |  |  |  |
|-----------------------------------------------------------|--------------|----------|--------------|-----------------------|--------------|--|--|--|
| Approved By:                                              | Date Issued: | Version: | Review Date: | Author:               | Page Number: |  |  |  |
| Environmental Manager                                     | 21/06/2022   | 1.0      | 21/06/2025   | Environmental Manager | 1 of 4       |  |  |  |





| 5.10                                           | Rainwater tank – has tank been checked for evidence of litter and functioning properly                                                                                      | Bi-<br>annually<br>(Jun, Dec)                                            | N/A                   |                                    |
|------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------|------------------------------------|
| 5.11                                           | Rainwater tank – has tank been checked for evidence of access by pests (birds, insects, mosquito larvae ect.)                                                               | Bi-<br>annually<br>(Jun, Dec)                                            | N/A                   |                                    |
| 5.12                                           | Rainwater tank – has structural integrity of tank been inspected? Note any dilapidation or repairs required / completed.                                                    | Bi-<br>annually<br>(Jun, Dec)                                            | N/A                   |                                    |
| 5.13                                           | The sediment chamber of the Ecoceptor will be reqgularly checked and cleaned and any damaged covers replaced.                                                               | Bi-<br>annually<br>(Jun, Dec)                                            | N/A                   |                                    |
| 6. Ver                                         | min and pest management mitigations   N/A                                                                                                                                   | Frequency                                                                | Y/N/NA                | General Comments                   |
| 6.1                                            | Drainage sumps and catch drains will be inspected daily and cleaned regularly to prevent providing a habitat for pests.                                                     | Ongoing                                                                  | Υ                     |                                    |
| 6.2                                            | Has the site been inspected for windblown litter? Any identified litter must be removed and disposed appropriately.                                                         | Ongoing                                                                  | Υ                     |                                    |
| 6.3                                            | All overhead structures and internal roofs are visually inspected weekly to ensure they are kept clean.                                                                     | Ongoing                                                                  | Y                     |                                    |
|                                                |                                                                                                                                                                             | _                                                                        | x/21/212              |                                    |
| 7. Poll                                        | lution management mitigations   N/A                                                                                                                                         | Frequency                                                                | Y/N/NA                | General Comments                   |
| 7.1                                            | Are all dangerous goods stored appropriately according to their ADG classes and compatibility?                                                                              | Daily                                                                    | Υ                     |                                    |
| 7.2                                            | Has training on the pollution incident response management plan been provided in toolbox?                                                                                   | As<br>required                                                           | Υ                     |                                    |
| 0 Eiro                                         | e management mitigations                                                                                                                                                    | Frequency                                                                | Y/N/NA                | General Comments                   |
| o. File                                        | ,                                                                                                                                                                           |                                                                          |                       | -                                  |
| 8.1                                            | Fire extinguishers are positioned at readily accessible points, including on mobile plant                                                                                   | Daily                                                                    | Υ                     |                                    |
| 8.1                                            | Fire extinguishers are positioned at readily accessible points,                                                                                                             | Daily                                                                    | Y Y/N/NA              | General Comments                   |
| 8.1                                            | Fire extinguishers are positioned at readily accessible points, including on mobile plant                                                                                   | Daily                                                                    |                       | General Comments                   |
| 9. Noi<br>9.1                                  | Fire extinguishers are positioned at readily accessible points, including on mobile plant  se and vibration mitigations   N/A                                               | Prequency As                                                             | Y/N/NA                | General Comments  General Comments |
| 9. Noi<br>9.1                                  | Fire extinguishers are positioned at readily accessible points, including on mobile plant  se and vibration mitigations   Are defective plant parked up and not being used? | Prequency As required                                                    | Y/N/NA<br>N/A         |                                    |
| 9. Noi<br>9.1                                  | Fire extinguishers are positioned at readily accessible points, including on mobile plant  se and vibration mitigations                                                     | Prequency As required Frequency                                          | Y/N/NA N/A Y/N/NA     |                                    |
| 9. Noi<br>9.1<br>10. W                         | Fire extinguishers are positioned at readily accessible points, including on mobile plant  se and vibration mitigations                                                     | Frequency As required Frequency Daily                                    | Y/N/NA N/A Y/N/NA Y   |                                    |
| 9. Noi<br>9.1<br>10. W<br>10.1<br>10.2         | Fire extinguishers are positioned at readily accessible points, including on mobile plant  ise and vibration mitigations                                                    | Frequency As required Frequency Daily Daily                              | Y/N/NA N/A  Y/N/NA Y  |                                    |
| 9. Noi<br>9.1<br>10. W<br>10.1<br>10.2         | Fire extinguishers are positioned at readily accessible points, including on mobile plant  ise and vibration mitigations                                                    | Frequency As required Frequency Daily Daily Daily                        | Y/N/NA N/A Y/N/NA Y Y | General Comments                   |
| 9. Noi<br>9.1<br>10. W<br>10.1<br>10.2<br>10.3 | Fire extinguishers are positioned at readily accessible points, including on mobile plant  ise and vibration mitigations                                                    | Frequency As required Frequency Daily Daily Daily Frequency Bi- annually | Y/N/NA N/A Y/N/NA Y Y | General Comments                   |

| Document Title: WORKPLACE INSPECTION CHECKLIST - PERIODIC       |            |     |            |                       |              |  |  |  |
|-----------------------------------------------------------------|------------|-----|------------|-----------------------|--------------|--|--|--|
| Approved By: Date Issued: Version: Review Date: Author: Page Nu |            |     |            |                       | Page Number: |  |  |  |
| Environmental Manager                                           | 21/06/2022 | 1.0 | 21/06/2025 | Environmental Manager | 2 of 4       |  |  |  |





| 12. Bi | odiversity 🗆 N/A                                                                                                                                | Frequency                            | Y/N/NA | General Comments |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--------|------------------|
| 12.1   | Weed treatment will occur alongside maintenance of landscaping within subject site. This supports compliance with the NSW Biosecurity Act 2015. | Quarterly<br>(Mar, Jun,<br>Sep, Dec) | N/A    |                  |

| Document Title: WORKPLACE INSPECTION CHECKLIST - PERIODIC |              |          |              |                       |              |  |  |  |
|-----------------------------------------------------------|--------------|----------|--------------|-----------------------|--------------|--|--|--|
| Approved By:                                              | Date Issued: | Version: | Review Date: | Author:               | Page Number: |  |  |  |
| Environmental Manager                                     | 21/06/2022   | 1.0      | 21/06/2025   | Environmental Manager | 3 of 4       |  |  |  |





| Action Plan - to be transferred as a 'Hazard Report'                 |                        |                 |                      |                 |  |
|----------------------------------------------------------------------|------------------------|-----------------|----------------------|-----------------|--|
| Actions required                                                     | Action assigned to     | Date assigned   | Date to be completed | Signature       |  |
|                                                                      |                        |                 |                      |                 |  |
|                                                                      |                        |                 |                      |                 |  |
|                                                                      |                        |                 |                      |                 |  |
|                                                                      |                        |                 |                      |                 |  |
|                                                                      |                        |                 |                      |                 |  |
|                                                                      |                        |                 |                      |                 |  |
|                                                                      |                        |                 |                      |                 |  |
|                                                                      |                        |                 |                      |                 |  |
|                                                                      |                        |                 |                      |                 |  |
|                                                                      |                        |                 |                      |                 |  |
|                                                                      |                        |                 |                      |                 |  |
|                                                                      |                        |                 |                      |                 |  |
|                                                                      |                        |                 |                      |                 |  |
|                                                                      |                        |                 |                      |                 |  |
|                                                                      |                        |                 |                      |                 |  |
|                                                                      |                        |                 |                      |                 |  |
|                                                                      |                        |                 |                      |                 |  |
|                                                                      |                        |                 |                      |                 |  |
|                                                                      |                        |                 |                      |                 |  |
|                                                                      |                        |                 |                      |                 |  |
|                                                                      |                        |                 |                      |                 |  |
|                                                                      |                        |                 |                      |                 |  |
|                                                                      |                        |                 |                      |                 |  |
|                                                                      |                        |                 |                      |                 |  |
|                                                                      |                        |                 |                      |                 |  |
|                                                                      |                        |                 |                      |                 |  |
| Storage and Reference                                                | Inspection Comple      | eted By         |                      | Date            |  |
| To be reviewed at Site Meeting.                                      |                        |                 |                      |                 |  |
| Workplace inspection checklists must be complet the end of each day. | eddaily, stored in the | site file and u | oloaded to Dat       | astation before |  |

| Document Title: WORKPLACE INSPECTION CHECKLIST - PERIODIC |              |          |              |                       |              |  |  |
|-----------------------------------------------------------|--------------|----------|--------------|-----------------------|--------------|--|--|
| Approved By:                                              | Date Issued: | Version: | Review Date: | Author:               | Page Number: |  |  |
| Environmental Manager                                     | 21/06/2022   | 1.0      | 21/06/2025   | Environmental Manager | 4 of 4       |  |  |





| Location:                | reDirect – Wetherill Park | Date:      | 09.11.22      |
|--------------------------|---------------------------|------------|---------------|
| Inspection Completed By: | M.Stewart                 | Signature: | M. P. Stewart |

| 1. Ge | neral Management and mitigations   N/A                                               | Frequency   | Y/N/NA | General Comments |
|-------|--------------------------------------------------------------------------------------|-------------|--------|------------------|
| 1.2   | Employees and contractors have been inducted and are suitably trained.               | As required | Υ      |                  |
| 1.3   | Plant and equipment being used is in good working condition at the start of the day? | Daily       | Y      |                  |

| 2. Tra | ffic mitigations                                                                            | Frequency | Y/N/NA | <b>General Comments</b> |
|--------|---------------------------------------------------------------------------------------------|-----------|--------|-------------------------|
| 2.1    | Traffic is continually monitored by Operations Coordinator?                                 | Daily     | Υ      |                         |
| 2.2    | AllI car spaces are free from obstruction and maintained for use by employees and visitors? | Daily     | Υ      |                         |
| 2.3    | Vehicles are entering and leaving the site in forward direction.                            | Daily     | Υ      |                         |

| 3. Aiı | quality, odour and dust mitigations  \[ \sqrt{N/A}                                                       | Frequency | Y/N/NA | <b>General Comments</b> |
|--------|----------------------------------------------------------------------------------------------------------|-----------|--------|-------------------------|
| 3.1    | Good dust management procedures are being implemented (inside building): Sweeper working and being used? | Daily     | Υ      |                         |
| 3.2    | Good dust management procedures are implemented (outside the building): Sweeper working and being used?  | Daily     | Υ      |                         |
| 3.3    | Residual waste has been transported offsite (check general waste bin capacity)?                          | Daily     | Υ      |                         |

| 5. Sto | rmwater mitigations                                                                                                                                                                                                                 | Frequency                            | Y/N/NA | <b>General Comments</b> |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--------|-------------------------|
| 5.1    | Are there any spills that have been left unattended?                                                                                                                                                                                | Daily                                | N      |                         |
| 5.2    | Have storm water drains been inspected for any build up of sediment, debris, litter and vegetation within drainage system?                                                                                                          | Monthly                              | Υ      |                         |
| 5.3    | If materials identified in stormwater drains, has it been removed?                                                                                                                                                                  | Monthly                              | N/A    |                         |
| 5.4    | Inflow areas and pit grates have been inspected and clear of litter / debris?                                                                                                                                                       | Monthly                              | Y      |                         |
| 5.5    | Ensure downpipe leaf eaters, first flush devices and litter screens are unblocked and are operating correctly.                                                                                                                      | Monthly                              | Y      |                         |
| 5.6    | Site structires to be regularly checked for erosion and scouring                                                                                                                                                                    | Monthly                              | Y      |                         |
| 5.7    | Treatment areas and structures will be regularly checked for the build up of litter material                                                                                                                                        | Monthly                              | Y      |                         |
| 5.8    | Remove grate and inspect internal walls and base. Remove any collected sediment, debris, litter and vegetation. Inspect and ensure grate is clear following any removal of objects. Ensure flush placement of grate upon refitment. | Quarterly<br>(Mar, Jun,<br>Sep, Dec) | Y      |                         |
| 5.9    | Have all drainage structures been inspected noting any dilapidation, if so have repairs been carried out?                                                                                                                           | Bi-<br>annually<br>(Jun, Dec)        | N/A    |                         |

| Document Title: WORKPLACE INSPECTION CHECKLIST - PERIODIC |              |          |              |                       |              |  |
|-----------------------------------------------------------|--------------|----------|--------------|-----------------------|--------------|--|
| Approved By:                                              | Date Issued: | Version: | Review Date: | Author:               | Page Number: |  |
| Environmental Manager                                     | 21/06/2022   | 1.0      | 21/06/2025   | Environmental Manager | 1 of 4       |  |





| 5.10                                           | Rainwater tank – has tank been checked for evidence of litter and functioning properly                                                                                      | Bi-<br>annually<br>(Jun, Dec)                                            | N/A                   |                                    |
|------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------|------------------------------------|
| 5.11                                           | Rainwater tank – has tank been checked for evidence of access by pests (birds, insects, mosquito larvae ect.)                                                               | Bi-<br>annually<br>(Jun, Dec)                                            | N/A                   |                                    |
| 5.12                                           | Rainwater tank – has structural integrity of tank been inspected? Note any dilapidation or repairs required / completed.                                                    | Bi-<br>annually<br>(Jun, Dec)                                            | N/A                   |                                    |
| 5.13                                           | The sediment chamber of the Ecoceptor will be reqgularly checked and cleaned and any damaged covers replaced.                                                               | Bi-<br>annually<br>(Jun, Dec)                                            | N/A                   |                                    |
| 6. Ver                                         | min and pest management mitigations   N/A                                                                                                                                   | Frequency                                                                | Y/N/NA                | General Comments                   |
| 6.1                                            | Drainage sumps and catch drains will be inspected daily and cleaned regularly to prevent providing a habitat for pests.                                                     | Ongoing                                                                  | Υ                     |                                    |
| 6.2                                            | Has the site been inspected for windblown litter? Any identified litter must be removed and disposed appropriately.                                                         | Ongoing                                                                  | Υ                     |                                    |
| 6.3                                            | All overhead structures and internal roofs are visually inspected weekly to ensure they are kept clean.                                                                     | Ongoing                                                                  | Y                     |                                    |
|                                                |                                                                                                                                                                             | _                                                                        | x/21/212              |                                    |
| 7. Poll                                        | lution management mitigations   N/A                                                                                                                                         | Frequency                                                                | Y/N/NA                | General Comments                   |
| 7.1                                            | Are all dangerous goods stored appropriately according to their ADG classes and compatibility?                                                                              | Daily                                                                    | Υ                     |                                    |
| 7.2                                            | Has training on the pollution incident response management plan been provided in toolbox?                                                                                   | As<br>required                                                           | Υ                     |                                    |
| 0 Eiro                                         | e management mitigations                                                                                                                                                    | Frequency                                                                | Y/N/NA                | General Comments                   |
| o. File                                        | ,                                                                                                                                                                           |                                                                          |                       | -                                  |
| 8.1                                            | Fire extinguishers are positioned at readily accessible points, including on mobile plant                                                                                   | Daily                                                                    | Υ                     |                                    |
| 8.1                                            | Fire extinguishers are positioned at readily accessible points,                                                                                                             | Daily                                                                    | Y Y/N/NA              | General Comments                   |
| 8.1                                            | Fire extinguishers are positioned at readily accessible points, including on mobile plant                                                                                   | Daily                                                                    |                       | General Comments                   |
| 9. Noi<br>9.1                                  | Fire extinguishers are positioned at readily accessible points, including on mobile plant  se and vibration mitigations   N/A                                               | Prequency As                                                             | Y/N/NA                | General Comments  General Comments |
| 9. Noi<br>9.1                                  | Fire extinguishers are positioned at readily accessible points, including on mobile plant  se and vibration mitigations   Are defective plant parked up and not being used? | Prequency As required                                                    | Y/N/NA<br>N/A         |                                    |
| 9. Noi<br>9.1                                  | Fire extinguishers are positioned at readily accessible points, including on mobile plant  se and vibration mitigations                                                     | Prequency As required Frequency                                          | Y/N/NA N/A Y/N/NA     |                                    |
| 9. Noi<br>9.1<br>10. W                         | Fire extinguishers are positioned at readily accessible points, including on mobile plant  se and vibration mitigations                                                     | Frequency As required Frequency Daily                                    | Y/N/NA N/A Y/N/NA Y   |                                    |
| 9. Noi<br>9.1<br>10. W<br>10.1<br>10.2         | Fire extinguishers are positioned at readily accessible points, including on mobile plant  ise and vibration mitigations                                                    | Frequency As required Frequency Daily Daily                              | Y/N/NA N/A  Y/N/NA Y  |                                    |
| 9. Noi<br>9.1<br>10. W<br>10.1<br>10.2         | Fire extinguishers are positioned at readily accessible points, including on mobile plant  ise and vibration mitigations                                                    | Frequency As required Frequency Daily Daily Daily                        | Y/N/NA N/A Y/N/NA Y Y | General Comments                   |
| 9. Noi<br>9.1<br>10. W<br>10.1<br>10.2<br>10.3 | Fire extinguishers are positioned at readily accessible points, including on mobile plant  ise and vibration mitigations                                                    | Frequency As required Frequency Daily Daily Daily Frequency Bi- annually | Y/N/NA N/A Y/N/NA Y Y | General Comments                   |

| Document Title: WORKPLACE INSPECTION CHECKLIST - PERIODIC                    |  |  |  |  |  |  |  |
|------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Approved By: Date Issued: Version: Review Date: Author: Page Number          |  |  |  |  |  |  |  |
| Environmental Manager 21/06/2022 1.0 21/06/2025 Environmental Manager 2 of 4 |  |  |  |  |  |  |  |





| 12. Bi | odiversity 🗆 N/A                                                                                                                                | Frequency                            | Y/N/NA | General Comments |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--------|------------------|
| 12.1   | Weed treatment will occur alongside maintenance of landscaping within subject site. This supports compliance with the NSW Biosecurity Act 2015. | Quarterly<br>(Mar, Jun,<br>Sep, Dec) | N/A    |                  |

| Document Title: WORKPLACE INSPECTION CHECKLIST - PERIODIC |              |          |              |                       |              |  |
|-----------------------------------------------------------|--------------|----------|--------------|-----------------------|--------------|--|
| Approved By:                                              | Date Issued: | Version: | Review Date: | Author:               | Page Number: |  |
| Environmental Manager                                     | 21/06/2022   | 1.0      | 21/06/2025   | Environmental Manager | 3 of 4       |  |





| Action Plan - to be transferred as a 'Hazard Report'                 |                        |                 |                      |                 |  |
|----------------------------------------------------------------------|------------------------|-----------------|----------------------|-----------------|--|
| Actions required                                                     | Action assigned to     | Date assigned   | Date to be completed | Signature       |  |
|                                                                      |                        |                 |                      |                 |  |
|                                                                      |                        |                 |                      |                 |  |
|                                                                      |                        |                 |                      |                 |  |
|                                                                      |                        |                 |                      |                 |  |
|                                                                      |                        |                 |                      |                 |  |
|                                                                      |                        |                 |                      |                 |  |
|                                                                      |                        |                 |                      |                 |  |
|                                                                      |                        |                 |                      |                 |  |
|                                                                      |                        |                 |                      |                 |  |
|                                                                      |                        |                 |                      |                 |  |
|                                                                      |                        |                 |                      |                 |  |
|                                                                      |                        |                 |                      |                 |  |
|                                                                      |                        |                 |                      |                 |  |
|                                                                      |                        |                 |                      |                 |  |
|                                                                      |                        |                 |                      |                 |  |
|                                                                      |                        |                 |                      |                 |  |
|                                                                      |                        |                 |                      |                 |  |
|                                                                      |                        |                 |                      |                 |  |
|                                                                      |                        |                 |                      |                 |  |
|                                                                      |                        |                 |                      |                 |  |
|                                                                      |                        |                 |                      |                 |  |
|                                                                      |                        |                 |                      |                 |  |
|                                                                      |                        |                 |                      |                 |  |
|                                                                      |                        |                 |                      |                 |  |
|                                                                      |                        |                 |                      |                 |  |
|                                                                      |                        |                 |                      |                 |  |
| Storage and Reference                                                | Inspection Comple      | eted By         |                      | Date            |  |
| To be reviewed at Site Meeting.                                      |                        |                 |                      |                 |  |
| Workplace inspection checklists must be complet the end of each day. | eddaily, stored in the | site file and u | oloaded to Dat       | astation before |  |

| Document Title: WORKPLACE INSPECTION CHECKLIST - PERIODIC |              |          |              |                       |              |  |  |
|-----------------------------------------------------------|--------------|----------|--------------|-----------------------|--------------|--|--|
| Approved By:                                              | Date Issued: | Version: | Review Date: | Author:               | Page Number: |  |  |
| Environmental Manager                                     | 21/06/2022   | 1.0      | 21/06/2025   | Environmental Manager | 4 of 4       |  |  |





| Location:                | reDirect – Wetherill Park | Date:      | 10.11.22     |
|--------------------------|---------------------------|------------|--------------|
| Inspection Completed By: | M.Stewart                 | Signature: | M.P. Stewart |

| 1. Ge | neral Management and mitigations                                                     | Frequency   | Y/N/NA | General Comments |
|-------|--------------------------------------------------------------------------------------|-------------|--------|------------------|
| 1.2   | Employees and contractors have been inducted and are suitably trained.               | As required | Υ      |                  |
| 1.3   | Plant and equipment being used is in good working condition at the start of the day? | Daily       | Y      |                  |

| 2. Tra | ffic mitigations                                                                            | Frequency | Y/N/NA | <b>General Comments</b> |
|--------|---------------------------------------------------------------------------------------------|-----------|--------|-------------------------|
| 2.1    | Traffic is continually monitored by Operations Coordinator?                                 | Daily     | Υ      |                         |
| 2.2    | AllI car spaces are free from obstruction and maintained for use by employees and visitors? | Daily     | Υ      |                         |
| 2.3    | Vehicles are entering and leaving the site in forward direction.                            | Daily     | Υ      |                         |

| 3. Aiı | quality, odour and dust mitigations  \[ \sum N/A \]                                                      | Frequency | Y/N/NA | General Comments |
|--------|----------------------------------------------------------------------------------------------------------|-----------|--------|------------------|
| 3.1    | Good dust management procedures are being implemented (inside building): Sweeper working and being used? | Daily     | Υ      |                  |
| 3.2    | Good dust management procedures are implemented (outside the building): Sweeper working and being used?  | Daily     | Υ      |                  |
| 3.3    | Residual waste has been transported offsite (check general waste bin capacity)?                          | Daily     | Υ      |                  |

| 5. Sto | ormwater mitigations                                                                                                                                                                                                                | Frequency                            | Y/N/NA | <b>General Comments</b> |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--------|-------------------------|
| 5.1    | Are there any spills that have been left unattended?                                                                                                                                                                                | Daily                                | N      |                         |
| 5.2    | Have storm water drains been inspected for any build up of sediment, debris, litter and vegetation within drainage system?                                                                                                          | Monthly                              | Υ      |                         |
| 5.3    | If materials identified in stormwater drains, has it been removed?                                                                                                                                                                  | Monthly                              | N/A    |                         |
| 5.4    | Inflow areas and pit grates have been inspected and clear of litter / debris?                                                                                                                                                       | Monthly                              | Y      |                         |
| 5.5    | Ensure downpipe leaf eaters, first flush devices and litter screens are unblocked and are operating correctly.                                                                                                                      | Monthly                              | Y      |                         |
| 5.6    | Site structires to be regularly checked for erosion and scouring                                                                                                                                                                    | Monthly                              | Y      |                         |
| 5.7    | Treatment areas and structures will be regularly checked for the build up of litter material                                                                                                                                        | Monthly                              | Y      |                         |
| 5.8    | Remove grate and inspect internal walls and base. Remove any collected sediment, debris, litter and vegetation. Inspect and ensure grate is clear following any removal of objects. Ensure flush placement of grate upon refitment. | Quarterly<br>(Mar, Jun,<br>Sep, Dec) | Y      |                         |
| 5.9    | Have all drainage structures been inspected noting any dilapidation, if so have repairs been carried out?                                                                                                                           | Bi-<br>annually<br>(Jun, Dec)        | N/A    |                         |

| Document Title: WORKPLACE INSPECTION CHECKLIST - PERIODIC |              |          |              |                       |              |  |
|-----------------------------------------------------------|--------------|----------|--------------|-----------------------|--------------|--|
| Approved By:                                              | Date Issued: | Version: | Review Date: | Author:               | Page Number: |  |
| Environmental Manager                                     | 21/06/2022   | 1.0      | 21/06/2025   | Environmental Manager | 1 of 4       |  |





| 5.10                                           | Rainwater tank – has tank been checked for evidence of litter and functioning properly                                                                                      | Bi-<br>annually<br>(Jun, Dec)                                            | N/A                   |                                    |
|------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------|------------------------------------|
| 5.11                                           | Rainwater tank – has tank been checked for evidence of access by pests (birds, insects, mosquito larvae ect.)                                                               | Bi-<br>annually<br>(Jun, Dec)                                            | N/A                   |                                    |
| 5.12                                           | Rainwater tank – has structural integrity of tank been inspected? Note any dilapidation or repairs required / completed.                                                    | Bi-<br>annually<br>(Jun, Dec)                                            | N/A                   |                                    |
| 5.13                                           | The sediment chamber of the Ecoceptor will be reqgularly checked and cleaned and any damaged covers replaced.                                                               | Bi-<br>annually<br>(Jun, Dec)                                            | N/A                   |                                    |
| 6. Ver                                         | min and pest management mitigations   N/A                                                                                                                                   | Frequency                                                                | Y/N/NA                | General Comments                   |
| 6.1                                            | Drainage sumps and catch drains will be inspected daily and cleaned regularly to prevent providing a habitat for pests.                                                     | Ongoing                                                                  | Υ                     |                                    |
| 6.2                                            | Has the site been inspected for windblown litter? Any identified litter must be removed and disposed appropriately.                                                         | Ongoing                                                                  | Υ                     |                                    |
| 6.3                                            | All overhead structures and internal roofs are visually inspected weekly to ensure they are kept clean.                                                                     | Ongoing                                                                  | Y                     |                                    |
|                                                |                                                                                                                                                                             | _                                                                        | x/21/212              |                                    |
| 7. Poll                                        | lution management mitigations   N/A                                                                                                                                         | Frequency                                                                | Y/N/NA                | General Comments                   |
| 7.1                                            | Are all dangerous goods stored appropriately according to their ADG classes and compatibility?                                                                              | Daily                                                                    | Υ                     |                                    |
| 7.2                                            | Has training on the pollution incident response management plan been provided in toolbox?                                                                                   | As<br>required                                                           | Υ                     |                                    |
| 0 Eiro                                         | e management mitigations                                                                                                                                                    | Frequency                                                                | Y/N/NA                | General Comments                   |
| o. File                                        | ,                                                                                                                                                                           |                                                                          |                       | -                                  |
| 8.1                                            | Fire extinguishers are positioned at readily accessible points, including on mobile plant                                                                                   | Daily                                                                    | Υ                     |                                    |
| 8.1                                            | Fire extinguishers are positioned at readily accessible points,                                                                                                             | Daily                                                                    | Y Y/N/NA              | General Comments                   |
| 8.1                                            | Fire extinguishers are positioned at readily accessible points, including on mobile plant                                                                                   | Daily                                                                    |                       | General Comments                   |
| 9. Noi<br>9.1                                  | Fire extinguishers are positioned at readily accessible points, including on mobile plant  se and vibration mitigations   N/A                                               | Prequency As                                                             | Y/N/NA                | General Comments  General Comments |
| 9. Noi<br>9.1                                  | Fire extinguishers are positioned at readily accessible points, including on mobile plant  se and vibration mitigations   Are defective plant parked up and not being used? | Prequency As required                                                    | Y/N/NA<br>N/A         |                                    |
| 9. Noi<br>9.1                                  | Fire extinguishers are positioned at readily accessible points, including on mobile plant  se and vibration mitigations                                                     | Prequency As required Frequency                                          | Y/N/NA N/A Y/N/NA     |                                    |
| 9. Noi<br>9.1<br>10. W                         | Fire extinguishers are positioned at readily accessible points, including on mobile plant  se and vibration mitigations                                                     | Frequency As required Frequency Daily                                    | Y/N/NA N/A Y/N/NA Y   |                                    |
| 9. Noi<br>9.1<br>10. W<br>10.1<br>10.2         | Fire extinguishers are positioned at readily accessible points, including on mobile plant  ise and vibration mitigations                                                    | Frequency As required Frequency Daily Daily                              | Y/N/NA N/A  Y/N/NA Y  |                                    |
| 9. Noi<br>9.1<br>10. W<br>10.1<br>10.2         | Fire extinguishers are positioned at readily accessible points, including on mobile plant  ise and vibration mitigations                                                    | Frequency As required Frequency Daily Daily Daily                        | Y/N/NA N/A Y/N/NA Y Y | General Comments                   |
| 9. Noi<br>9.1<br>10. W<br>10.1<br>10.2<br>10.3 | Fire extinguishers are positioned at readily accessible points, including on mobile plant  ise and vibration mitigations                                                    | Frequency As required Frequency Daily Daily Daily Frequency Bi- annually | Y/N/NA N/A Y/N/NA Y Y | General Comments                   |

| Document Title: WORKPLACE INSPECTION CHECKLIST - PERIODIC                    |  |  |  |  |  |  |  |
|------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Approved By: Date Issued: Version: Review Date: Author: Page Number          |  |  |  |  |  |  |  |
| Environmental Manager 21/06/2022 1.0 21/06/2025 Environmental Manager 2 of 4 |  |  |  |  |  |  |  |





| 12. Bi | odiversity 🗆 N/A                                                                                                                                | Frequency                            | Y/N/NA | General Comments |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--------|------------------|
| 12.1   | Weed treatment will occur alongside maintenance of landscaping within subject site. This supports compliance with the NSW Biosecurity Act 2015. | Quarterly<br>(Mar, Jun,<br>Sep, Dec) | N/A    |                  |

| Document Title: WORKPLACE INSPECTION CHECKLIST - PERIODIC |              |          |              |                       |              |  |
|-----------------------------------------------------------|--------------|----------|--------------|-----------------------|--------------|--|
| Approved By:                                              | Date Issued: | Version: | Review Date: | Author:               | Page Number: |  |
| Environmental Manager                                     | 21/06/2022   | 1.0      | 21/06/2025   | Environmental Manager | 3 of 4       |  |





| Action Plan - to b                                                   | Action Plan - to be transferred as a 'Hazard Report' |                 |                      |                 |  |  |
|----------------------------------------------------------------------|------------------------------------------------------|-----------------|----------------------|-----------------|--|--|
| Actions required                                                     | Action assigned to                                   | Date assigned   | Date to be completed | Signature       |  |  |
|                                                                      |                                                      |                 |                      |                 |  |  |
|                                                                      |                                                      |                 |                      |                 |  |  |
|                                                                      |                                                      |                 |                      |                 |  |  |
|                                                                      |                                                      |                 |                      |                 |  |  |
|                                                                      |                                                      |                 |                      |                 |  |  |
|                                                                      |                                                      |                 |                      |                 |  |  |
|                                                                      |                                                      |                 |                      |                 |  |  |
|                                                                      |                                                      |                 |                      |                 |  |  |
|                                                                      |                                                      |                 |                      |                 |  |  |
|                                                                      |                                                      |                 |                      |                 |  |  |
|                                                                      |                                                      |                 |                      |                 |  |  |
|                                                                      |                                                      |                 |                      |                 |  |  |
|                                                                      |                                                      |                 |                      |                 |  |  |
|                                                                      |                                                      |                 |                      |                 |  |  |
|                                                                      |                                                      |                 |                      |                 |  |  |
|                                                                      |                                                      |                 |                      |                 |  |  |
|                                                                      |                                                      |                 |                      |                 |  |  |
|                                                                      |                                                      |                 |                      |                 |  |  |
|                                                                      |                                                      |                 |                      |                 |  |  |
|                                                                      |                                                      |                 |                      |                 |  |  |
|                                                                      |                                                      |                 |                      |                 |  |  |
|                                                                      |                                                      |                 |                      |                 |  |  |
|                                                                      |                                                      |                 |                      |                 |  |  |
|                                                                      |                                                      |                 |                      |                 |  |  |
|                                                                      |                                                      |                 |                      |                 |  |  |
|                                                                      |                                                      |                 |                      |                 |  |  |
| Storage and Reference                                                | Inspection Comple                                    | eted By         |                      | Date            |  |  |
| To be reviewed at Site Meeting.                                      |                                                      |                 |                      |                 |  |  |
| Workplace inspection checklists must be complet the end of each day. | eddaily, stored in the                               | site file and u | oloaded to Dat       | astation before |  |  |

| Document Title: WORKPLACE INSPECTION CHECKLIST - PERIODIC |              |          |              |                       |              |  |  |
|-----------------------------------------------------------|--------------|----------|--------------|-----------------------|--------------|--|--|
| Approved By:                                              | Date Issued: | Version: | Review Date: | Author:               | Page Number: |  |  |
| Environmental Manager                                     | 21/06/2022   | 1.0      | 21/06/2025   | Environmental Manager | 4 of 4       |  |  |





| Location:                | reDirect – Wetherill Park | Date:      | 30.11.22      |
|--------------------------|---------------------------|------------|---------------|
| Inspection Completed By: | M.Stewart                 | Signature: | M. P. Stewart |

| 1. Ge | neral Management and mitigations   N/A                                               | Frequency   | Y/N/NA | General Comments |
|-------|--------------------------------------------------------------------------------------|-------------|--------|------------------|
| 1.2   | Employees and contractors have been inducted and are suitably trained.               | As required | Υ      |                  |
| 1.3   | Plant and equipment being used is in good working condition at the start of the day? | Daily       | Y      |                  |

| 2. Tra | ffic mitigations                                                                            | Frequency | Y/N/NA | <b>General Comments</b> |
|--------|---------------------------------------------------------------------------------------------|-----------|--------|-------------------------|
| 2.1    | Traffic is continually monitored by Operations Coordinator?                                 | Daily     | Υ      |                         |
| 2.2    | AllI car spaces are free from obstruction and maintained for use by employees and visitors? | Daily     | Υ      |                         |
| 2.3    | Vehicles are entering and leaving the site in forward direction.                            | Daily     | Υ      |                         |

| 3. Aiı | quality, odour and dust mitigations  \[ \sum N/A \]                                                      | Frequency | Y/N/NA | <b>General Comments</b> |
|--------|----------------------------------------------------------------------------------------------------------|-----------|--------|-------------------------|
| 3.1    | Good dust management procedures are being implemented (inside building): Sweeper working and being used? | Daily     | Υ      |                         |
| 3.2    | Good dust management procedures are implemented (outside the building): Sweeper working and being used?  | Daily     | Υ      |                         |
| 3.3    | Residual waste has been transported offsite (check general waste bin capacity)?                          | Daily     | Υ      |                         |

| 5. Sto | rmwater mitigations                                                                                                                                                                                                                 | Frequency                            | Y/N/NA | <b>General Comments</b> |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--------|-------------------------|
| 5.1    | Are there any spills that have been left unattended?                                                                                                                                                                                | Daily                                | N      |                         |
| 5.2    | Have storm water drains been inspected for any build up of sediment, debris, litter and vegetation within drainage system?                                                                                                          | Monthly                              | Υ      |                         |
| 5.3    | If materials identified in stormwater drains, has it been removed?                                                                                                                                                                  | Monthly                              | N/A    |                         |
| 5.4    | Inflow areas and pit grates have been inspected and clear of litter / debris?                                                                                                                                                       | Monthly                              | Y      |                         |
| 5.5    | Ensure downpipe leaf eaters, first flush devices and litter screens are unblocked and are operating correctly.                                                                                                                      | Monthly                              | Y      |                         |
| 5.6    | Site structires to be regularly checked for erosion and scouring                                                                                                                                                                    | Monthly                              | Y      |                         |
| 5.7    | Treatment areas and structures will be regularly checked for the build up of litter material                                                                                                                                        | Monthly                              | Y      |                         |
| 5.8    | Remove grate and inspect internal walls and base. Remove any collected sediment, debris, litter and vegetation. Inspect and ensure grate is clear following any removal of objects. Ensure flush placement of grate upon refitment. | Quarterly<br>(Mar, Jun,<br>Sep, Dec) | Y      |                         |
| 5.9    | Have all drainage structures been inspected noting any dilapidation, if so have repairs been carried out?                                                                                                                           | Bi-<br>annually<br>(Jun, Dec)        | N/A    |                         |

| Document Title: WORKPLACE INSPECTION CHECKLIST - PERIODIC |              |          |              |                       |              |  |  |
|-----------------------------------------------------------|--------------|----------|--------------|-----------------------|--------------|--|--|
| Approved By:                                              | Date Issued: | Version: | Review Date: | Author:               | Page Number: |  |  |
| Environmental Manager                                     | 21/06/2022   | 1.0      | 21/06/2025   | Environmental Manager | 1 of 4       |  |  |





| 5.10                                           | Rainwater tank – has tank been checked for evidence of litter and functioning properly                                                                                      | Bi-<br>annually<br>(Jun, Dec)                                            | N/A                   |                                    |
|------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------|------------------------------------|
| 5.11                                           | Rainwater tank – has tank been checked for evidence of access by pests (birds, insects, mosquito larvae ect.)                                                               | Bi-<br>annually<br>(Jun, Dec)                                            | N/A                   |                                    |
| 5.12                                           | Rainwater tank – has structural integrity of tank been inspected? Note any dilapidation or repairs required / completed.                                                    | Bi-<br>annually<br>(Jun, Dec)                                            | N/A                   |                                    |
| 5.13                                           | The sediment chamber of the Ecoceptor will be reqgularly checked and cleaned and any damaged covers replaced.                                                               | Bi-<br>annually<br>(Jun, Dec)                                            | N/A                   |                                    |
| 6. Ver                                         | min and pest management mitigations   N/A                                                                                                                                   | Frequency                                                                | Y/N/NA                | General Comments                   |
| 6.1                                            | Drainage sumps and catch drains will be inspected daily and cleaned regularly to prevent providing a habitat for pests.                                                     | Ongoing                                                                  | Υ                     |                                    |
| 6.2                                            | Has the site been inspected for windblown litter? Any identified litter must be removed and disposed appropriately.                                                         | Ongoing                                                                  | Υ                     |                                    |
| 6.3                                            | All overhead structures and internal roofs are visually inspected weekly to ensure they are kept clean.                                                                     | Ongoing                                                                  | Y                     |                                    |
|                                                |                                                                                                                                                                             | _                                                                        | x/21/212              |                                    |
| 7. Poll                                        | lution management mitigations   N/A                                                                                                                                         | Frequency                                                                | Y/N/NA                | General Comments                   |
| 7.1                                            | Are all dangerous goods stored appropriately according to their ADG classes and compatibility?                                                                              | Daily                                                                    | Υ                     |                                    |
| 7.2                                            | Has training on the pollution incident response management plan been provided in toolbox?                                                                                   | As<br>required                                                           | Υ                     |                                    |
| 0 Eiro                                         | e management mitigations                                                                                                                                                    | Frequency                                                                | Y/N/NA                | General Comments                   |
| o. File                                        | ,                                                                                                                                                                           |                                                                          |                       | -                                  |
| 8.1                                            | Fire extinguishers are positioned at readily accessible points, including on mobile plant                                                                                   | Daily                                                                    | Υ                     |                                    |
| 8.1                                            | Fire extinguishers are positioned at readily accessible points,                                                                                                             | Daily                                                                    | Y Y/N/NA              | General Comments                   |
| 8.1                                            | Fire extinguishers are positioned at readily accessible points, including on mobile plant                                                                                   | Daily                                                                    |                       | General Comments                   |
| 9. Noi<br>9.1                                  | Fire extinguishers are positioned at readily accessible points, including on mobile plant  se and vibration mitigations   N/A                                               | Prequency As                                                             | Y/N/NA                | General Comments  General Comments |
| 9. Noi<br>9.1                                  | Fire extinguishers are positioned at readily accessible points, including on mobile plant  se and vibration mitigations   Are defective plant parked up and not being used? | Prequency As required                                                    | Y/N/NA<br>N/A         |                                    |
| 9. Noi<br>9.1                                  | Fire extinguishers are positioned at readily accessible points, including on mobile plant  se and vibration mitigations                                                     | Prequency As required Frequency                                          | Y/N/NA N/A Y/N/NA     |                                    |
| 9. Noi<br>9.1<br>10. W                         | Fire extinguishers are positioned at readily accessible points, including on mobile plant  se and vibration mitigations                                                     | Frequency As required Frequency Daily                                    | Y/N/NA N/A Y/N/NA Y   |                                    |
| 9. Noi<br>9.1<br>10. W<br>10.1<br>10.2         | Fire extinguishers are positioned at readily accessible points, including on mobile plant  ise and vibration mitigations                                                    | Frequency As required Frequency Daily Daily                              | Y/N/NA N/A  Y/N/NA Y  |                                    |
| 9. Noi<br>9.1<br>10. W<br>10.1<br>10.2         | Fire extinguishers are positioned at readily accessible points, including on mobile plant  ise and vibration mitigations                                                    | Frequency As required Frequency Daily Daily Daily                        | Y/N/NA N/A Y/N/NA Y Y | General Comments                   |
| 9. Noi<br>9.1<br>10. W<br>10.1<br>10.2<br>10.3 | Fire extinguishers are positioned at readily accessible points, including on mobile plant  ise and vibration mitigations                                                    | Frequency As required Frequency Daily Daily Daily Frequency Bi- annually | Y/N/NA N/A Y/N/NA Y Y | General Comments                   |

| Document Title: WORKPLACE INSPECTION CHECKLIST - PERIODIC                    |  |  |  |  |  |  |  |
|------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Approved By: Date Issued: Version: Review Date: Author: Page Number          |  |  |  |  |  |  |  |
| Environmental Manager 21/06/2022 1.0 21/06/2025 Environmental Manager 2 of 4 |  |  |  |  |  |  |  |





| 12. Bi | odiversity 🗆 N/A                                                                                                                                | Frequency                            | Y/N/NA | General Comments |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--------|------------------|
| 12.1   | Weed treatment will occur alongside maintenance of landscaping within subject site. This supports compliance with the NSW Biosecurity Act 2015. | Quarterly<br>(Mar, Jun,<br>Sep, Dec) | N/A    |                  |

| Document Title: WORKPLACE INSPECTION CHECKLIST - PERIODIC |              |          |              |                       |              |  |
|-----------------------------------------------------------|--------------|----------|--------------|-----------------------|--------------|--|
| Approved By:                                              | Date Issued: | Version: | Review Date: | Author:               | Page Number: |  |
| Environmental Manager                                     | 21/06/2022   | 1.0      | 21/06/2025   | Environmental Manager | 3 of 4       |  |





| Action Plan - to b                                                   | Action Plan - to be transferred as a 'Hazard Report' |                 |                      |                 |  |
|----------------------------------------------------------------------|------------------------------------------------------|-----------------|----------------------|-----------------|--|
| Actions required                                                     | Action assigned to                                   | Date assigned   | Date to be completed | Signature       |  |
|                                                                      |                                                      |                 |                      |                 |  |
|                                                                      |                                                      |                 |                      |                 |  |
|                                                                      |                                                      |                 |                      |                 |  |
|                                                                      |                                                      |                 |                      |                 |  |
|                                                                      |                                                      |                 |                      |                 |  |
|                                                                      |                                                      |                 |                      |                 |  |
|                                                                      |                                                      |                 |                      |                 |  |
|                                                                      |                                                      |                 |                      |                 |  |
|                                                                      |                                                      |                 |                      |                 |  |
|                                                                      |                                                      |                 |                      |                 |  |
|                                                                      |                                                      |                 |                      |                 |  |
|                                                                      |                                                      |                 |                      |                 |  |
|                                                                      |                                                      |                 |                      |                 |  |
|                                                                      |                                                      |                 |                      |                 |  |
|                                                                      |                                                      |                 |                      |                 |  |
|                                                                      |                                                      |                 |                      |                 |  |
|                                                                      |                                                      |                 |                      |                 |  |
|                                                                      |                                                      |                 |                      |                 |  |
|                                                                      |                                                      |                 |                      |                 |  |
|                                                                      |                                                      |                 |                      |                 |  |
|                                                                      |                                                      |                 |                      |                 |  |
|                                                                      |                                                      |                 |                      |                 |  |
|                                                                      |                                                      |                 |                      |                 |  |
|                                                                      |                                                      |                 |                      |                 |  |
|                                                                      |                                                      |                 |                      |                 |  |
|                                                                      |                                                      |                 |                      |                 |  |
| Storage and Reference                                                | Inspection Comple                                    | eted By         |                      | Date            |  |
| To be reviewed at Site Meeting.                                      |                                                      |                 |                      |                 |  |
| Workplace inspection checklists must be complet the end of each day. | eddaily, stored in the                               | site file and u | oloaded to Dat       | astation before |  |

| Document Title: WORKPLACE INSPECTION CHECKLIST - PERIODIC |              |          |              |                       |              |  |  |
|-----------------------------------------------------------|--------------|----------|--------------|-----------------------|--------------|--|--|
| Approved By:                                              | Date Issued: | Version: | Review Date: | Author:               | Page Number: |  |  |
| Environmental Manager                                     | 21/06/2022   | 1.0      | 21/06/2025   | Environmental Manager | 4 of 4       |  |  |





| Location:                | reDirect – Wetherill Park | Date:      | 01.12.22      |
|--------------------------|---------------------------|------------|---------------|
| Inspection Completed By: | M.Stewart                 | Signature: | M. P. Stewart |

| 1. Ge | neral Management and mitigations   N/A                                               | Frequency   | Y/N/NA | General Comments |
|-------|--------------------------------------------------------------------------------------|-------------|--------|------------------|
| 1.2   | Employees and contractors have been inducted and are suitably trained.               | As required | Υ      |                  |
| 1.3   | Plant and equipment being used is in good working condition at the start of the day? | Daily       | Y      |                  |

| 2. Tra | ffic mitigations                                                                            | Frequency | Y/N/NA | <b>General Comments</b> |
|--------|---------------------------------------------------------------------------------------------|-----------|--------|-------------------------|
| 2.1    | Traffic is continually monitored by Operations Coordinator?                                 | Daily     | Υ      |                         |
| 2.2    | AllI car spaces are free from obstruction and maintained for use by employees and visitors? | Daily     | Υ      |                         |
| 2.3    | Vehicles are entering and leaving the site in forward direction.                            | Daily     | Υ      |                         |

| 3. Aiı | quality, odour and dust mitigations  \[ \sqrt{N/A}                                                       | Frequency | Y/N/NA | <b>General Comments</b> |
|--------|----------------------------------------------------------------------------------------------------------|-----------|--------|-------------------------|
| 3.1    | Good dust management procedures are being implemented (inside building): Sweeper working and being used? | Daily     | Υ      |                         |
| 3.2    | Good dust management procedures are implemented (outside the building): Sweeper working and being used?  | Daily     | Υ      |                         |
| 3.3    | Residual waste has been transported offsite (check general waste bin capacity)?                          | Daily     | Υ      |                         |

| 5. Sto | rmwater mitigations                                                                                                                                                                                                                 | Frequency                            | Y/N/NA        | <b>General Comments</b>                                                             |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|---------------|-------------------------------------------------------------------------------------|
| 5.1    | Are there any spills that have been left unattended?                                                                                                                                                                                | Daily                                | N             |                                                                                     |
| 5.2    | Have storm water drains been inspected for any build up of sediment, debris, litter and vegetation within drainage system?                                                                                                          |                                      | Υ             |                                                                                     |
| 5.3    | If materials identified in stormwater drains, has it been removed?                                                                                                                                                                  | Monthly                              | Y             |                                                                                     |
| 5.4    | Inflow areas and pit grates have been inspected and clear of litter / debris?                                                                                                                                                       | Monthly                              | Y             |                                                                                     |
| 5.5    | Ensure downpipe leaf eaters, first flush devices and litter screens are unblocked and are operating correctly.                                                                                                                      | Monthly                              | Y             |                                                                                     |
| 5.6    | Site structires to be regularly checked for erosion and scouring                                                                                                                                                                    | Monthly                              | Y             |                                                                                     |
| 5.7    | Treatment areas and structures will be regularly checked for the build up of litter material                                                                                                                                        | Monthly                              | Y             |                                                                                     |
| 5.8    | Remove grate and inspect internal walls and base. Remove any collected sediment, debris, litter and vegetation. Inspect and ensure grate is clear following any removal of objects. Ensure flush placement of grate upon refitment. | Quarterly<br>(Mar, Jun,<br>Sep, Dec) | Y Dec<br>2022 | Lift grate,brush out lip for grate<br>and down walls remove debris<br>replace grate |
| 5.9    | Have all drainage structures been inspected noting any dilapidation, if so have repairs been carried out?                                                                                                                           | Bi-<br>annually<br>(Jun, Dec)        | Y Dec<br>2022 | Inspected no action required                                                        |

| Document Title: WORKPLACE INSPECTION CHECKLIST - PERIODIC |              |          |              |                       |              |  |  |
|-----------------------------------------------------------|--------------|----------|--------------|-----------------------|--------------|--|--|
| Approved By:                                              | Date Issued: | Version: | Review Date: | Author:               | Page Number: |  |  |
| Environmental Manager                                     | 21/06/2022   | 1.0      | 21/06/2025   | Environmental Manager | 1 of 4       |  |  |





| 5.10           | Rainwater tank – has tank been checked for evidence of litter                                                                                         | Bi-                           |               |                                     |
|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|---------------|-------------------------------------|
| 3.10           | and functioning properly                                                                                                                              | annually<br>(Jun, Dec)        | Y Dec<br>2022 | Check Basket – no litter            |
| 5.11           | Rainwater tank – has tank been checked for evidence of access by pests (birds, insects, mosquito larvae ect.)                                         | Bi-<br>annually<br>(Jun, Dec) | Y Dec<br>2022 | Empty tank inspect no sign of pests |
| 5.12           | Rainwater tank – has structural integrity of tank been inspected? Note any dilapidation or repairs required / completed.                              | Bi-<br>annually<br>(Jun, Dec) | Y Dec<br>2022 | No repairs required                 |
| 5.13           | The sediment chamber of the Ecoceptor will be reqgularly checked and cleaned and any damaged covers replaced.                                         | Bi-<br>annually<br>(Jun, Dec) | Y Dec<br>2022 | Checked no action required          |
| 6. Vei         | min and pest management mitigations   N/A                                                                                                             | Frequency                     | Y/N/NA        | General Comments                    |
| 6.1            | Drainage sumps and catch drains will be inspected daily and cleaned regularly to prevent providing a habitat for pests.                               | Ongoing                       | Υ             |                                     |
| 6.2            | Has the site been inspected for windblown litter? Any identified litter must be removed and disposed appropriately.                                   | Ongoing                       | Υ             |                                     |
| 6.3            | All overhead structures and internal roofs are visually inspected weekly to ensure they are kept clean.                                               | Ongoing                       | Y             |                                     |
| 7. Pol         | lution management mitigations                                                                                                                         | Frequency                     | Y/N/NA        | General Comments                    |
| 7.1            | Are all dangerous goods stored appropriately according to their ADG classes and compatibility?                                                        | Daily                         | Υ             |                                     |
| 7.2            | Has training on the pollution incident response management plan been provided in toolbox?                                                             | As<br>required                | Υ             |                                     |
| 8. Fire        | e management mitigations                                                                                                                              | Frequency                     | Y/N/NA        | General Comments                    |
| 8.1            | Fire extinguishers are positioned at readily accessible points, including on mobile plant                                                             | Daily                         | Υ             |                                     |
| 9. No          | ise and vibration mitigations $\square$ N/A                                                                                                           | Frequency                     | Y/N/NA        | General Comments                    |
| 9.1            | Are defective plant parked up and not being used?                                                                                                     | As<br>required                | Υ             |                                     |
| 10. W          | aste management mitigations                                                                                                                           | Frequency                     | Y/N/NA        | <b>General Comments</b>             |
| 10.1           | All waste stored on site onsite is permitted by the EPL?                                                                                              | Daily                         | Υ             |                                     |
| 10.2           | The total amount of waste stored at the premises is under EPL Authorised Amount?                                                                      | Daily                         | Υ             |                                     |
| 10.3           | The total amount of waste received daily is being recorded via the weighbridges in place?                                                             | Daily                         | Υ             |                                     |
|                |                                                                                                                                                       | Гиодиодом                     | Y/N/NA        | General Comments                    |
| 11. Fl         | ooding mitigations                                                                                                                                    | Frequency                     | .,,           |                                     |
| 11. Fl<br>11.1 | Inspection and maintenance of the Flood Emergency Kit will be undertaken as required to ensure all components are present and in operating condition. | Bi-<br>annually<br>(Jun, Dec) | Y Dec 2022    | Fully stocked and in good condition |

| Document Title: WORKPLACE INSPECTION CHECKLIST - PERIODIC |              |          |              |                       |              |  |  |
|-----------------------------------------------------------|--------------|----------|--------------|-----------------------|--------------|--|--|
| Approved By:                                              | Date Issued: | Version: | Review Date: | Author:               | Page Number: |  |  |
| Environmental Manager                                     | 21/06/2022   | 1.0      | 21/06/2025   | Environmental Manager | 2 of 4       |  |  |





| 12. Bi | odiversity 🗆 N/A                                                                                                                                | Frequency                            | Y/N/NA        | General Comments |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|---------------|------------------|
| 12.1   | Weed treatment will occur alongside maintenance of landscaping within subject site. This supports compliance with the NSW Biosecurity Act 2015. | Quarterly<br>(Mar, Jun,<br>Sep, Dec) | Y Dec<br>2022 |                  |

| Document Title: WORKPLACE INSPECTION CHECKLIST - PERIODIC |              |          |              |                       |              |  |
|-----------------------------------------------------------|--------------|----------|--------------|-----------------------|--------------|--|
| Approved By:                                              | Date Issued: | Version: | Review Date: | Author:               | Page Number: |  |
| Environmental Manager                                     | 21/06/2022   | 1.0      | 21/06/2025   | Environmental Manager | 3 of 4       |  |





| Action Plan - to be transferred as a 'Hazard Report'                   |                       |                              |                      |                 |  |
|------------------------------------------------------------------------|-----------------------|------------------------------|----------------------|-----------------|--|
| Actions required                                                       | Action assigned to    | Date assigned                | Date to be completed | Signature       |  |
|                                                                        |                       |                              |                      |                 |  |
|                                                                        |                       |                              |                      |                 |  |
|                                                                        |                       |                              |                      |                 |  |
|                                                                        |                       |                              |                      |                 |  |
|                                                                        |                       |                              |                      |                 |  |
|                                                                        |                       |                              |                      |                 |  |
|                                                                        |                       |                              |                      |                 |  |
|                                                                        |                       |                              |                      |                 |  |
|                                                                        |                       |                              |                      |                 |  |
|                                                                        |                       |                              |                      |                 |  |
|                                                                        |                       |                              |                      |                 |  |
|                                                                        |                       |                              |                      |                 |  |
|                                                                        |                       |                              |                      |                 |  |
|                                                                        |                       |                              |                      |                 |  |
|                                                                        |                       |                              |                      |                 |  |
|                                                                        |                       |                              |                      |                 |  |
|                                                                        |                       |                              |                      |                 |  |
|                                                                        |                       |                              |                      |                 |  |
|                                                                        |                       |                              |                      |                 |  |
|                                                                        |                       |                              |                      |                 |  |
|                                                                        |                       |                              |                      |                 |  |
|                                                                        |                       |                              |                      |                 |  |
|                                                                        |                       |                              |                      |                 |  |
|                                                                        |                       |                              |                      |                 |  |
|                                                                        |                       |                              |                      |                 |  |
| Storage and Reference                                                  | Inspection Comple     | eted Rv                      | <u> </u>             | Date            |  |
|                                                                        | mapection comple      | .cu by                       |                      |                 |  |
| To be reviewed at Site Meeting.                                        |                       |                              |                      |                 |  |
| Workplace inspection checklists must be completed the end of each day. | ddaily, stored in the | site file and u <sub>l</sub> | ploaded to Dat       | astation before |  |

| Document Title: WORKPLACE INSPECTION CHECKLIST - PERIODIC |              |          |              |                       |              |  |  |
|-----------------------------------------------------------|--------------|----------|--------------|-----------------------|--------------|--|--|
| Approved By:                                              | Date Issued: | Version: | Review Date: | Author:               | Page Number: |  |  |
| Environmental Manager                                     | 21/06/2022   | 1.0      | 21/06/2025   | Environmental Manager | 4 of 4       |  |  |





| Location:                | reDirect – Wetherill Park | Date:      | 28.02.23      |
|--------------------------|---------------------------|------------|---------------|
| Inspection Completed By: | M.Stewart                 | Signature: | M. P. Stewart |

| 1. Ge | neral Management and mitigations   N/A                                               | Frequency   | Y/N/NA | General Comments |
|-------|--------------------------------------------------------------------------------------|-------------|--------|------------------|
| 1.2   | Employees and contractors have been inducted and are suitably trained.               | As required | Υ      |                  |
| 1.3   | Plant and equipment being used is in good working condition at the start of the day? | Daily       | Y      |                  |

| 2. Tra | ffic mitigations                                                                            | Frequency | Y/N/NA | <b>General Comments</b> |
|--------|---------------------------------------------------------------------------------------------|-----------|--------|-------------------------|
| 2.1    | Traffic is continually monitored by Operations Coordinator?                                 | Daily     | Υ      |                         |
| 2.2    | AllI car spaces are free from obstruction and maintained for use by employees and visitors? | Daily     | Υ      |                         |
| 2.3    | Vehicles are entering and leaving the site in forward direction.                            | Daily     | Υ      |                         |

| 3. Aiı | quality, odour and dust mitigations                                                                      | Frequency | Y/N/NA | <b>General Comments</b> |
|--------|----------------------------------------------------------------------------------------------------------|-----------|--------|-------------------------|
| 3.1    | Good dust management procedures are being implemented (inside building): Sweeper working and being used? | Daily     | Υ      |                         |
| 3.2    | Good dust management procedures are implemented (outside the building): Sweeper working and being used?  | Daily     | Υ      |                         |
| 3.3    | Residual waste has been transported offsite (check general waste bin capacity)?                          | Daily     | Υ      |                         |

| 5. Sto | rmwater mitigations                                                                                                                                                                                                                 | Frequency                            | Y/N/NA | <b>General Comments</b> |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--------|-------------------------|
| 5.1    | Are there any spills that have been left unattended?                                                                                                                                                                                | Daily                                | N      |                         |
| 5.2    | Have storm water drains been inspected for any build up of sediment, debris, litter and vegetation within drainage system?                                                                                                          | Monthly                              | Υ      |                         |
| 5.3    | If materials identified in stormwater drains, has it been removed?                                                                                                                                                                  | Monthly                              | N/A    |                         |
| 5.4    | Inflow areas and pit grates have been inspected and clear of litter / debris?                                                                                                                                                       | Monthly                              | Y      |                         |
| 5.5    | Ensure downpipe leaf eaters, first flush devices and litter screens are unblocked and are operating correctly.                                                                                                                      | Monthly                              | Y      |                         |
| 5.6    | Site structires to be regularly checked for erosion and scouring                                                                                                                                                                    | Monthly                              | Y      |                         |
| 5.7    | Treatment areas and structures will be regularly checked for the build up of litter material                                                                                                                                        | Monthly                              | Y      |                         |
| 5.8    | Remove grate and inspect internal walls and base. Remove any collected sediment, debris, litter and vegetation. Inspect and ensure grate is clear following any removal of objects. Ensure flush placement of grate upon refitment. | Quarterly<br>(Mar, Jun,<br>Sep, Dec) | Y      |                         |
| 5.9    | Have all drainage structures been inspected noting any dilapidation, if so have repairs been carried out?                                                                                                                           | Bi-<br>annually<br>(Jun, Dec)        | N/A    |                         |

| Document Title: WORKPLACE INSPECTION CHECKLIST - PERIODIC |              |          |              |                       |              |  |  |
|-----------------------------------------------------------|--------------|----------|--------------|-----------------------|--------------|--|--|
| Approved By:                                              | Date Issued: | Version: | Review Date: | Author:               | Page Number: |  |  |
| Environmental Manager                                     | 21/06/2022   | 1.0      | 21/06/2025   | Environmental Manager | 1 of 4       |  |  |





| 5.10                                           | Rainwater tank – has tank been checked for evidence of litter and functioning properly                                                                                      | Bi-<br>annually<br>(Jun, Dec)                                            | N/A                   |                                    |
|------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------|------------------------------------|
| 5.11                                           | Rainwater tank – has tank been checked for evidence of access by pests (birds, insects, mosquito larvae ect.)                                                               | Bi-<br>annually<br>(Jun, Dec)                                            | N/A                   |                                    |
| 5.12                                           | Rainwater tank – has structural integrity of tank been inspected? Note any dilapidation or repairs required / completed.                                                    | Bi-<br>annually<br>(Jun, Dec)                                            | N/A                   |                                    |
| 5.13                                           | The sediment chamber of the Ecoceptor will be reqgularly checked and cleaned and any damaged covers replaced.                                                               | Bi-<br>annually<br>(Jun, Dec)                                            | N/A                   |                                    |
| 6. Ver                                         | min and pest management mitigations   N/A                                                                                                                                   | Frequency                                                                | Y/N/NA                | General Comments                   |
| 6.1                                            | Drainage sumps and catch drains will be inspected daily and cleaned regularly to prevent providing a habitat for pests.                                                     | Ongoing                                                                  | Υ                     |                                    |
| 6.2                                            | Has the site been inspected for windblown litter? Any identified litter must be removed and disposed appropriately.                                                         | Ongoing                                                                  | Υ                     |                                    |
| 6.3                                            | All overhead structures and internal roofs are visually inspected weekly to ensure they are kept clean.                                                                     | Ongoing                                                                  | Y                     |                                    |
|                                                |                                                                                                                                                                             | _                                                                        | x/21/212              |                                    |
| 7. Poll                                        | lution management mitigations   N/A                                                                                                                                         | Frequency                                                                | Y/N/NA                | General Comments                   |
| 7.1                                            | Are all dangerous goods stored appropriately according to their ADG classes and compatibility?                                                                              | Daily                                                                    | Υ                     |                                    |
| 7.2                                            | Has training on the pollution incident response management plan been provided in toolbox?                                                                                   | As<br>required                                                           | Υ                     |                                    |
| 0 Eiro                                         | e management mitigations                                                                                                                                                    | Frequency                                                                | Y/N/NA                | General Comments                   |
| o. File                                        | ,                                                                                                                                                                           |                                                                          |                       | -                                  |
| 8.1                                            | Fire extinguishers are positioned at readily accessible points, including on mobile plant                                                                                   | Daily                                                                    | Υ                     |                                    |
| 8.1                                            | Fire extinguishers are positioned at readily accessible points,                                                                                                             | Daily                                                                    | Y Y/N/NA              | General Comments                   |
| 8.1                                            | Fire extinguishers are positioned at readily accessible points, including on mobile plant                                                                                   | Daily                                                                    |                       | General Comments                   |
| 9. Noi<br>9.1                                  | Fire extinguishers are positioned at readily accessible points, including on mobile plant  se and vibration mitigations   N/A                                               | Prequency As                                                             | Y/N/NA                | General Comments  General Comments |
| 9. Noi<br>9.1                                  | Fire extinguishers are positioned at readily accessible points, including on mobile plant  se and vibration mitigations   Are defective plant parked up and not being used? | Prequency As required                                                    | Y/N/NA<br>N/A         |                                    |
| 9. Noi<br>9.1                                  | Fire extinguishers are positioned at readily accessible points, including on mobile plant  se and vibration mitigations                                                     | Prequency As required Frequency                                          | Y/N/NA N/A Y/N/NA     |                                    |
| 9. Noi<br>9.1<br>10. W                         | Fire extinguishers are positioned at readily accessible points, including on mobile plant  se and vibration mitigations                                                     | Frequency As required Frequency Daily                                    | Y/N/NA N/A Y/N/NA Y   |                                    |
| 9. Noi<br>9.1<br>10. W<br>10.1<br>10.2         | Fire extinguishers are positioned at readily accessible points, including on mobile plant  ise and vibration mitigations                                                    | Frequency As required Frequency Daily Daily                              | Y/N/NA N/A  Y/N/NA Y  |                                    |
| 9. Noi<br>9.1<br>10. W<br>10.1<br>10.2         | Fire extinguishers are positioned at readily accessible points, including on mobile plant  ise and vibration mitigations                                                    | Frequency As required Frequency Daily Daily Daily                        | Y/N/NA N/A Y/N/NA Y Y | General Comments                   |
| 9. Noi<br>9.1<br>10. W<br>10.1<br>10.2<br>10.3 | Fire extinguishers are positioned at readily accessible points, including on mobile plant  ise and vibration mitigations                                                    | Frequency As required Frequency Daily Daily Daily Frequency Bi- annually | Y/N/NA N/A Y/N/NA Y Y | General Comments                   |

| Document Title: WORKPLACE INSPECTION CHECKLIST - PERIODIC                    |  |  |  |  |  |  |  |
|------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Approved By: Date Issued: Version: Review Date: Author: Page Numbe           |  |  |  |  |  |  |  |
| Environmental Manager 21/06/2022 1.0 21/06/2025 Environmental Manager 2 of 4 |  |  |  |  |  |  |  |





| 12. Bi | odiversity 🗆 N/A                                                                                                                                | Frequency                            | Y/N/NA | General Comments |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--------|------------------|
| 12.1   | Weed treatment will occur alongside maintenance of landscaping within subject site. This supports compliance with the NSW Biosecurity Act 2015. | Quarterly<br>(Mar, Jun,<br>Sep, Dec) | N/A    |                  |

| Document Title: WORKPLACE INSPECTION CHECKLIST - PERIODIC |              |          |              |                       |              |  |  |
|-----------------------------------------------------------|--------------|----------|--------------|-----------------------|--------------|--|--|
| Approved By:                                              | Date Issued: | Version: | Review Date: | Author:               | Page Number: |  |  |
| Environmental Manager                                     | 21/06/2022   | 1.0      | 21/06/2025   | Environmental Manager | 3 of 4       |  |  |





| Action Plan - to be transferred as a 'Hazard Report'                 |                        |                 |                      |                 |  |
|----------------------------------------------------------------------|------------------------|-----------------|----------------------|-----------------|--|
| Actions required                                                     | Action assigned to     | Date assigned   | Date to be completed | Signature       |  |
|                                                                      |                        |                 |                      |                 |  |
|                                                                      |                        |                 |                      |                 |  |
|                                                                      |                        |                 |                      |                 |  |
|                                                                      |                        |                 |                      |                 |  |
|                                                                      |                        |                 |                      |                 |  |
|                                                                      |                        |                 |                      |                 |  |
|                                                                      |                        |                 |                      |                 |  |
|                                                                      |                        |                 |                      |                 |  |
|                                                                      |                        |                 |                      |                 |  |
|                                                                      |                        |                 |                      |                 |  |
|                                                                      |                        |                 |                      |                 |  |
|                                                                      |                        |                 |                      |                 |  |
|                                                                      |                        |                 |                      |                 |  |
|                                                                      |                        |                 |                      |                 |  |
|                                                                      |                        |                 |                      |                 |  |
|                                                                      |                        |                 |                      |                 |  |
|                                                                      |                        |                 |                      |                 |  |
|                                                                      |                        |                 |                      |                 |  |
|                                                                      |                        |                 |                      |                 |  |
|                                                                      |                        |                 |                      |                 |  |
|                                                                      |                        |                 |                      |                 |  |
|                                                                      |                        |                 |                      |                 |  |
|                                                                      |                        |                 |                      |                 |  |
|                                                                      |                        |                 |                      |                 |  |
|                                                                      |                        |                 |                      |                 |  |
|                                                                      |                        |                 |                      |                 |  |
| Storage and Reference                                                | Inspection Comple      | eted By         |                      | Date            |  |
| To be reviewed at Site Meeting.                                      |                        |                 |                      |                 |  |
| Workplace inspection checklists must be complet the end of each day. | eddaily, stored in the | site file and u | oloaded to Dat       | astation before |  |

| Document Title: WORKPLACE INSPECTION CHECKLIST - PERIODIC |              |          |              |                       |              |  |
|-----------------------------------------------------------|--------------|----------|--------------|-----------------------|--------------|--|
| Approved By:                                              | Date Issued: | Version: | Review Date: | Author:               | Page Number: |  |
| Environmental Manager                                     | 21/06/2022   | 1.0      | 21/06/2025   | Environmental Manager | 4 of 4       |  |





| Location:                | reDirect – Wetherill Park | Date:      | 31.03.23      |
|--------------------------|---------------------------|------------|---------------|
| Inspection Completed By: | M.Stewart                 | Signature: | M. P. Stewart |

| 1. Ge | neral Management and mitigations   N/A                                               | Frequency   | Y/N/NA | General Comments |
|-------|--------------------------------------------------------------------------------------|-------------|--------|------------------|
| 1.2   | Employees and contractors have been inducted and are suitably trained.               | As required | Υ      |                  |
| 1.3   | Plant and equipment being used is in good working condition at the start of the day? | Daily       | Y      |                  |

| 2. Tra | ffic mitigations                                                                            | Frequency | Y/N/NA | <b>General Comments</b> |
|--------|---------------------------------------------------------------------------------------------|-----------|--------|-------------------------|
| 2.1    | Traffic is continually monitored by Operations Coordinator?                                 | Daily     | Υ      |                         |
| 2.2    | AllI car spaces are free from obstruction and maintained for use by employees and visitors? | Daily     | Υ      |                         |
| 2.3    | Vehicles are entering and leaving the site in forward direction.                            | Daily     | Υ      |                         |

| 3. Aiı | quality, odour and dust mitigations                                                                      | Frequency | Y/N/NA | <b>General Comments</b> |
|--------|----------------------------------------------------------------------------------------------------------|-----------|--------|-------------------------|
| 3.1    | Good dust management procedures are being implemented (inside building): Sweeper working and being used? | Daily     | Υ      |                         |
| 3.2    | Good dust management procedures are implemented (outside the building): Sweeper working and being used?  | Daily     | Υ      |                         |
| 3.3    | Residual waste has been transported offsite (check general waste bin capacity)?                          | Daily     | Υ      |                         |

| 5. Sto | ormwater mitigations                                                                                                                                                                                                                | Frequency                            | Y/N/NA             | <b>General Comments</b>                                                             |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--------------------|-------------------------------------------------------------------------------------|
| 5.1    | Are there any spills that have been left unattended?                                                                                                                                                                                | Daily                                | N                  |                                                                                     |
| 5.2    | Have storm water drains been inspected for any build up of sediment, debris, litter and vegetation within drainage system?                                                                                                          | Monthly                              | Υ                  |                                                                                     |
| 5.3    | If materials identified in stormwater drains, has it been removed?                                                                                                                                                                  | Monthly                              | Y                  |                                                                                     |
| 5.4    | Inflow areas and pit grates have been inspected and clear of litter / debris?                                                                                                                                                       | Monthly                              | Y                  |                                                                                     |
| 5.5    | Ensure downpipe leaf eaters, first flush devices and litter screens are unblocked and are operating correctly.                                                                                                                      | Monthly                              | Y                  |                                                                                     |
| 5.6    | Site structires to be regularly checked for erosion and scouring                                                                                                                                                                    | Monthly                              | Y                  |                                                                                     |
| 5.7    | Treatment areas and structures will be regularly checked for the build up of litter material                                                                                                                                        | Monthly                              | Y                  |                                                                                     |
| 5.8    | Remove grate and inspect internal walls and base. Remove any collected sediment, debris, litter and vegetation. Inspect and ensure grate is clear following any removal of objects. Ensure flush placement of grate upon refitment. | Quarterly<br>(Mar, Jun,<br>Sep, Dec) | Y<br>March<br>2023 | Lift grate,brush out lip for grate<br>and down walls remove debris<br>replace grate |
| 5.9    | Have all drainage structures been inspected noting any dilapidation, if so have repairs been carried out?                                                                                                                           | Bi-<br>annually<br>(Jun, Dec)        | Y<br>March<br>2023 | Inspected no action required                                                        |

| Document Title: WORKPLACE INSPECTION CHECKLIST - PERIODIC |              |          |              |                       |              |  |
|-----------------------------------------------------------|--------------|----------|--------------|-----------------------|--------------|--|
| Approved By:                                              | Date Issued: | Version: | Review Date: | Author:               | Page Number: |  |
| Environmental Manager                                     | 21/06/2022   | 1.0      | 21/06/2025   | Environmental Manager | 1 of 4       |  |





|         | RECYCLING PLAN — WETHERILL PARK INS                                                                                      | SPECTION                      | N CHECK            | (LIST more) Chance                  |
|---------|--------------------------------------------------------------------------------------------------------------------------|-------------------------------|--------------------|-------------------------------------|
| 5.10    | Rainwater tank – has tank been checked for evidence of litter and functioning properly                                   | Bi-<br>annually<br>(Jun, Dec) | Y<br>March<br>2023 | Check Basket – no litter            |
| 5.11    | Rainwater tank – has tank been checked for evidence of access by pests (birds, insects, mosquito larvae ect.)            | Bi-<br>annually<br>(Jun, Dec) | Y<br>March<br>2023 | Empty tank inspect no sign of pests |
| 5.12    | Rainwater tank – has structural integrity of tank been inspected? Note any dilapidation or repairs required / completed. | Bi-<br>annually<br>(Jun, Dec) | Y<br>March<br>2023 | No repairs required                 |
| 5.13    | The sediment chamber of the Ecoceptor will be reqgularly checked and cleaned and any damaged covers replaced.            | Bi-<br>annually<br>(Jun, Dec) | Y<br>March<br>2023 | Checked no action required          |
| 6. Ver  | rmin and pest management mitigations   N/A                                                                               | Frequency                     | Y/N/NA             | <b>General Comments</b>             |
| 6.1     | Drainage sumps and catch drains will be inspected daily and cleaned regularly to prevent providing a habitat for pests.  | Ongoing                       | Υ                  |                                     |
| 6.2     | Has the site been inspected for windblown litter? Any identified litter must be removed and disposed appropriately.      | Ongoing                       | Υ                  |                                     |
| 6.3     | All overhead structures and internal roofs are visually inspected weekly to ensure they are kept clean.                  | Ongoing                       | Y                  |                                     |
| 7. Pol  | lution management mitigations                                                                                            | Frequency                     | Y/N/NA             | General Comments                    |
| 7.1     | Are all dangerous goods stored appropriately according to their ADG classes and compatibility?                           | Daily                         | Υ                  |                                     |
| 7.2     | Has training on the pollution incident response management plan been provided in toolbox?                                | As<br>required                | Υ                  |                                     |
| 8. Fire | e management mitigations                                                                                                 | Frequency                     | Y/N/NA             | General Comments                    |
| 8.1     | Fire extinguishers are positioned at readily accessible points, including on mobile plant                                | Daily                         | Υ                  |                                     |
| 9. Noi  | ise and vibration mitigations                                                                                            | Frequency                     | Y/N/NA             | General Comments                    |
| 9.1     | Are defective plant parked up and not being used?                                                                        | As<br>required                | Υ                  |                                     |
| 10. W   | aste management mitigations   N/A                                                                                        | Frequency                     | Y/N/NA             | General Comments                    |
| 10.1    | All waste stored on site onsite is permitted by the EPL?                                                                 | Daily                         | Υ                  |                                     |
| 10.2    | The total amount of waste stored at the premises is under EPL Authorised Amount?                                         | Daily                         | Υ                  |                                     |
| 10.3    | The total amount of waste received daily is being recorded via the weighbridges in place?                                | Daily                         | Υ                  |                                     |
|         |                                                                                                                          | Frequency                     | Y/N/NA             | General Comments                    |
| 11. Flo | ooding mitigations                                                                                                       | rrequericy                    | -,,                |                                     |

| Document Title: WORKPLACE INSPECTION CHECKLIST - PERIODIC |              |          |              |                       |              |  |
|-----------------------------------------------------------|--------------|----------|--------------|-----------------------|--------------|--|
| Approved By:                                              | Date Issued: | Version: | Review Date: | Author:               | Page Number: |  |
| Environmental Manager                                     | 21/06/2022   | 1.0      | 21/06/2025   | Environmental Manager | 2 of 4       |  |





| 11.2 | Yearly (at minimum) evacuation drills will be implemented as | Yearly | Y March |  |
|------|--------------------------------------------------------------|--------|---------|--|
| 11.2 | part of ongoing training onsite.                             |        | 2023    |  |

| <b>12.</b> Bi | odiversity 🗆 N/A                                                                                                                                | Frequency                            | Y/N/NA          | General Comments |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-----------------|------------------|
| 12.1          | Weed treatment will occur alongside maintenance of landscaping within subject site. This supports compliance with the NSW Biosecurity Act 2015. | Quarterly<br>(Mar, Jun,<br>Sep, Dec) | Y March<br>2023 |                  |

| Document Title: WORKPLACE INSPECTION CHECKLIST - PERIODIC |              |          |              |                       |              |
|-----------------------------------------------------------|--------------|----------|--------------|-----------------------|--------------|
| Approved By:                                              | Date Issued: | Version: | Review Date: | Author:               | Page Number: |
| Environmental Manager                                     | 21/06/2022   | 1.0      | 21/06/2025   | Environmental Manager | 3 of 4       |





| Action Plan - to be transferred as a 'Hazard Report'                  |                         |                 |                      |                |
|-----------------------------------------------------------------------|-------------------------|-----------------|----------------------|----------------|
| Actions required                                                      | Action assigned to      | Date assigned   | Date to be completed | Signature      |
|                                                                       |                         |                 |                      |                |
|                                                                       |                         |                 |                      |                |
|                                                                       |                         |                 |                      |                |
|                                                                       |                         |                 |                      |                |
|                                                                       |                         |                 |                      |                |
|                                                                       |                         |                 |                      |                |
|                                                                       |                         |                 |                      |                |
|                                                                       |                         |                 |                      |                |
|                                                                       |                         |                 |                      |                |
|                                                                       |                         |                 |                      |                |
|                                                                       |                         |                 |                      |                |
|                                                                       |                         |                 |                      |                |
|                                                                       |                         |                 |                      |                |
|                                                                       |                         |                 |                      |                |
|                                                                       |                         |                 |                      |                |
|                                                                       |                         |                 |                      |                |
|                                                                       |                         |                 |                      |                |
|                                                                       |                         |                 |                      |                |
|                                                                       |                         |                 |                      |                |
|                                                                       |                         |                 |                      |                |
|                                                                       |                         |                 |                      |                |
|                                                                       |                         |                 |                      |                |
|                                                                       |                         |                 |                      |                |
|                                                                       |                         |                 |                      |                |
|                                                                       |                         |                 |                      |                |
|                                                                       |                         |                 |                      |                |
| Storage and Reference                                                 | Inspection Comple       | eted By         |                      | Date           |
| To be reviewed at Site Meeting.                                       |                         |                 |                      |                |
| Workplace inspection checklists must be complete the end of each day. | teddaily, stored in the | site file and u | ploaded to Data      | station before |

| Document Title: WORKPLACE INSPECTION CHECKLIST - PERIODIC |              |          |              |                       |              |  |
|-----------------------------------------------------------|--------------|----------|--------------|-----------------------|--------------|--|
| Approved By:                                              | Date Issued: | Version: | Review Date: | Author:               | Page Number: |  |
| Environmental Manager                                     | 21/06/2022   | 1.0      | 21/06/2025   | Environmental Manager | 4 of 4       |  |





| Location:                | reDirect – Wetherill Park | Date:      | 30.04.23      |
|--------------------------|---------------------------|------------|---------------|
| Inspection Completed By: | M.Stewart                 | Signature: | M. P. Stewart |

| 1. Ge | neral Management and mitigations   N/A                                               | Frequency   | Y/N/NA | General Comments |
|-------|--------------------------------------------------------------------------------------|-------------|--------|------------------|
| 1.2   | Employees and contractors have been inducted and are suitably trained.               | As required | Υ      |                  |
| 1.3   | Plant and equipment being used is in good working condition at the start of the day? | Daily       | Y      |                  |

| 2. Tra | ffic mitigations                                                                            | Frequency | Y/N/NA | <b>General Comments</b> |
|--------|---------------------------------------------------------------------------------------------|-----------|--------|-------------------------|
| 2.1    | Traffic is continually monitored by Operations Coordinator?                                 | Daily     | Υ      |                         |
| 2.2    | AllI car spaces are free from obstruction and maintained for use by employees and visitors? | Daily     | Υ      |                         |
| 2.3    | Vehicles are entering and leaving the site in forward direction.                            | Daily     | Υ      |                         |

| 3. Aiı | quality, odour and dust mitigations  \[ \subseteq \ \mathbb{N/A} \]                                      | Frequency | Y/N/NA | General Comments |
|--------|----------------------------------------------------------------------------------------------------------|-----------|--------|------------------|
| 3.1    | Good dust management procedures are being implemented (inside building): Sweeper working and being used? | Daily     | Υ      |                  |
| 3.2    | Good dust management procedures are implemented (outside the building): Sweeper working and being used?  | Daily     | Υ      |                  |
| 3.3    | Residual waste has been transported offsite (check general waste bin capacity)?                          | Daily     | Υ      |                  |

| 5. Sto | rmwater mitigations                                                                                                                                                                                                                 | Frequency                            | Y/N/NA | <b>General Comments</b> |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--------|-------------------------|
| 5.1    | Are there any spills that have been left unattended?                                                                                                                                                                                | Daily                                | N      |                         |
| 5.2    | Have storm water drains been inspected for any build up of sediment, debris, litter and vegetation within drainage system?                                                                                                          | Monthly                              | Υ      |                         |
| 5.3    | If materials identified in stormwater drains, has it been removed?                                                                                                                                                                  | Monthly                              | N/A    |                         |
| 5.4    | Inflow areas and pit grates have been inspected and clear of litter / debris?                                                                                                                                                       | Monthly                              | Y      |                         |
| 5.5    | Ensure downpipe leaf eaters, first flush devices and litter screens are unblocked and are operating correctly.                                                                                                                      | Monthly                              | Y      |                         |
| 5.6    | Site structires to be regularly checked for erosion and scouring                                                                                                                                                                    | Monthly                              | Y      |                         |
| 5.7    | Treatment areas and structures will be regularly checked for the build up of litter material                                                                                                                                        | Monthly                              | Y      |                         |
| 5.8    | Remove grate and inspect internal walls and base. Remove any collected sediment, debris, litter and vegetation. Inspect and ensure grate is clear following any removal of objects. Ensure flush placement of grate upon refitment. | Quarterly<br>(Mar, Jun,<br>Sep, Dec) | Y      |                         |
| 5.9    | Have all drainage structures been inspected noting any dilapidation, if so have repairs been carried out?                                                                                                                           | Bi-<br>annually<br>(Jun, Dec)        | N/A    |                         |

| Document Title: WORKPLACE INSPECTION CHECKLIST - PERIODIC |              |          |              |                       |              |  |
|-----------------------------------------------------------|--------------|----------|--------------|-----------------------|--------------|--|
| Approved By:                                              | Date Issued: | Version: | Review Date: | Author:               | Page Number: |  |
| Environmental Manager                                     | 21/06/2022   | 1.0      | 21/06/2025   | Environmental Manager | 1 of 4       |  |





| 5.10                                           | Rainwater tank – has tank been checked for evidence of litter and functioning properly                                                                                      | Bi-<br>annually<br>(Jun, Dec)                                            | N/A                   |                                    |
|------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------|------------------------------------|
| 5.11                                           | Rainwater tank – has tank been checked for evidence of access by pests (birds, insects, mosquito larvae ect.)                                                               | Bi-<br>annually<br>(Jun, Dec)                                            | N/A                   |                                    |
| 5.12                                           | Rainwater tank – has structural integrity of tank been inspected? Note any dilapidation or repairs required / completed.                                                    | Bi-<br>annually<br>(Jun, Dec)                                            | N/A                   |                                    |
| 5.13                                           | The sediment chamber of the Ecoceptor will be reqgularly checked and cleaned and any damaged covers replaced.                                                               | Bi-<br>annually<br>(Jun, Dec)                                            | N/A                   |                                    |
| 6. Ver                                         | min and pest management mitigations   N/A                                                                                                                                   | Frequency                                                                | Y/N/NA                | General Comments                   |
| 6.1                                            | Drainage sumps and catch drains will be inspected daily and cleaned regularly to prevent providing a habitat for pests.                                                     | Ongoing                                                                  | Υ                     |                                    |
| 6.2                                            | Has the site been inspected for windblown litter? Any identified litter must be removed and disposed appropriately.                                                         | Ongoing                                                                  | Υ                     |                                    |
| 6.3                                            | All overhead structures and internal roofs are visually inspected weekly to ensure they are kept clean.                                                                     | Ongoing                                                                  | Y                     |                                    |
|                                                |                                                                                                                                                                             | _                                                                        | x/21/212              |                                    |
| 7. Poll                                        | lution management mitigations   N/A                                                                                                                                         | Frequency                                                                | Y/N/NA                | General Comments                   |
| 7.1                                            | Are all dangerous goods stored appropriately according to their ADG classes and compatibility?                                                                              | Daily                                                                    | Υ                     |                                    |
| 7.2                                            | Has training on the pollution incident response management plan been provided in toolbox?                                                                                   | As<br>required                                                           | Υ                     |                                    |
| 0 Eiro                                         | e management mitigations                                                                                                                                                    | Frequency                                                                | Y/N/NA                | General Comments                   |
| o. File                                        | ,                                                                                                                                                                           |                                                                          |                       | -                                  |
| 8.1                                            | Fire extinguishers are positioned at readily accessible points, including on mobile plant                                                                                   | Daily                                                                    | Υ                     |                                    |
| 8.1                                            | Fire extinguishers are positioned at readily accessible points,                                                                                                             | Daily                                                                    | Y Y/N/NA              | General Comments                   |
| 8.1                                            | Fire extinguishers are positioned at readily accessible points, including on mobile plant                                                                                   | Daily                                                                    |                       | General Comments                   |
| 9. Noi<br>9.1                                  | Fire extinguishers are positioned at readily accessible points, including on mobile plant  se and vibration mitigations   N/A                                               | Prequency As                                                             | Y/N/NA                | General Comments  General Comments |
| 9. Noi<br>9.1                                  | Fire extinguishers are positioned at readily accessible points, including on mobile plant  se and vibration mitigations   Are defective plant parked up and not being used? | Prequency As required                                                    | Y/N/NA<br>N/A         |                                    |
| 9. Noi<br>9.1                                  | Fire extinguishers are positioned at readily accessible points, including on mobile plant  se and vibration mitigations                                                     | Prequency As required Frequency                                          | Y/N/NA N/A Y/N/NA     |                                    |
| 9. Noi<br>9.1<br>10. W                         | Fire extinguishers are positioned at readily accessible points, including on mobile plant  se and vibration mitigations                                                     | Frequency As required Frequency Daily                                    | Y/N/NA N/A Y/N/NA Y   |                                    |
| 9. Noi<br>9.1<br>10. W<br>10.1<br>10.2         | Fire extinguishers are positioned at readily accessible points, including on mobile plant  ise and vibration mitigations                                                    | Frequency As required Frequency Daily Daily                              | Y/N/NA N/A  Y/N/NA Y  |                                    |
| 9. Noi<br>9.1<br>10. W<br>10.1<br>10.2         | Fire extinguishers are positioned at readily accessible points, including on mobile plant  ise and vibration mitigations                                                    | Frequency As required Frequency Daily Daily Daily                        | Y/N/NA N/A Y/N/NA Y Y | General Comments                   |
| 9. Noi<br>9.1<br>10. W<br>10.1<br>10.2<br>10.3 | Fire extinguishers are positioned at readily accessible points, including on mobile plant  ise and vibration mitigations                                                    | Frequency As required  Frequency Daily Daily Daily Frequency Bi-annually | Y/N/NA N/A Y/N/NA Y Y | General Comments                   |

| Document Title: WORKPLACE INSPECTION CHECKLIST - PERIODIC                    |  |  |  |  |  |  |  |
|------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Approved By: Date Issued: Version: Review Date: Author: Page Numb            |  |  |  |  |  |  |  |
| Environmental Manager 21/06/2022 1.0 21/06/2025 Environmental Manager 2 of 4 |  |  |  |  |  |  |  |





| 12. Bi | odiversity 🗆 N/A                                                                                                                                | Frequency                            | Y/N/NA | General Comments |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--------|------------------|
| 12.1   | Weed treatment will occur alongside maintenance of landscaping within subject site. This supports compliance with the NSW Biosecurity Act 2015. | Quarterly<br>(Mar, Jun,<br>Sep, Dec) | N/A    |                  |

| Document Title: WORKPLACE INSPECTION CHECKLIST - PERIODIC |              |          |              |                       |              |  |
|-----------------------------------------------------------|--------------|----------|--------------|-----------------------|--------------|--|
| Approved By:                                              | Date Issued: | Version: | Review Date: | Author:               | Page Number: |  |
| Environmental Manager                                     | 21/06/2022   | 1.0      | 21/06/2025   | Environmental Manager | 3 of 4       |  |





| Action Plan - to be transferred as a 'Hazard Report'                  |                         |                 |                      |                |
|-----------------------------------------------------------------------|-------------------------|-----------------|----------------------|----------------|
| Actions required                                                      | Action assigned to      | Date assigned   | Date to be completed | Signature      |
|                                                                       |                         |                 |                      |                |
|                                                                       |                         |                 |                      |                |
|                                                                       |                         |                 |                      |                |
|                                                                       |                         |                 |                      |                |
|                                                                       |                         |                 |                      |                |
|                                                                       |                         |                 |                      |                |
|                                                                       |                         |                 |                      |                |
|                                                                       |                         |                 |                      |                |
|                                                                       |                         |                 |                      |                |
|                                                                       |                         |                 |                      |                |
|                                                                       |                         |                 |                      |                |
|                                                                       |                         |                 |                      |                |
|                                                                       |                         |                 |                      |                |
|                                                                       |                         |                 |                      |                |
|                                                                       |                         |                 |                      |                |
|                                                                       |                         |                 |                      |                |
|                                                                       |                         |                 |                      |                |
|                                                                       |                         |                 |                      |                |
|                                                                       |                         |                 |                      |                |
|                                                                       |                         |                 |                      |                |
|                                                                       |                         |                 |                      |                |
|                                                                       |                         |                 |                      |                |
|                                                                       |                         |                 |                      |                |
|                                                                       |                         |                 |                      |                |
|                                                                       |                         |                 |                      |                |
|                                                                       |                         |                 |                      |                |
| Storage and Reference                                                 | Inspection Comple       | eted By         |                      | Date           |
| To be reviewed at Site Meeting.                                       |                         |                 |                      |                |
| Workplace inspection checklists must be complete the end of each day. | teddaily, stored in the | site file and u | ploaded to Data      | station before |

| Document Title: WORKPLACE INSPECTION CHECKLIST - PERIODIC |              |          |              |                       |              |  |
|-----------------------------------------------------------|--------------|----------|--------------|-----------------------|--------------|--|
| Approved By:                                              | Date Issued: | Version: | Review Date: | Author:               | Page Number: |  |
| Environmental Manager                                     | 21/06/2022   | 1.0      | 21/06/2025   | Environmental Manager | 4 of 4       |  |





| Location:                | reDirect – Wetherill Park | Date:      | 31.05.23      |
|--------------------------|---------------------------|------------|---------------|
| Inspection Completed By: | M.Stewart                 | Signature: | M. P. Stewart |

| 1. Ge | neral Management and mitigations   N/A                                               | Frequency   | Y/N/NA | General Comments |
|-------|--------------------------------------------------------------------------------------|-------------|--------|------------------|
| 1.2   | Employees and contractors have been inducted and are suitably trained.               | As required | Υ      |                  |
| 1.3   | Plant and equipment being used is in good working condition at the start of the day? | Daily       | Y      |                  |

| 2. Tra | ffic mitigations                                                                            | Frequency | Y/N/NA | <b>General Comments</b> |
|--------|---------------------------------------------------------------------------------------------|-----------|--------|-------------------------|
| 2.1    | Traffic is continually monitored by Operations Coordinator?                                 | Daily     | Υ      |                         |
| 2.2    | AllI car spaces are free from obstruction and maintained for use by employees and visitors? | Daily     | Υ      |                         |
| 2.3    | Vehicles are entering and leaving the site in forward direction.                            | Daily     | Υ      |                         |

| 3. Aiı | quality, odour and dust mitigations  \[ \sum N/A \]                                                      | Frequency | Y/N/NA | General Comments |
|--------|----------------------------------------------------------------------------------------------------------|-----------|--------|------------------|
| 3.1    | Good dust management procedures are being implemented (inside building): Sweeper working and being used? | Daily     | Υ      |                  |
| 3.2    | Good dust management procedures are implemented (outside the building): Sweeper working and being used?  | Daily     | Υ      |                  |
| 3.3    | Residual waste has been transported offsite (check general waste bin capacity)?                          | Daily     | Υ      |                  |

| 5. Sto | ormwater mitigations                                                                                                                                                                                                                | Frequency                            | Y/N/NA | <b>General Comments</b> |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--------|-------------------------|
| 5.1    | Are there any spills that have been left unattended?                                                                                                                                                                                | Daily                                | N      |                         |
| 5.2    | Have storm water drains been inspected for any build up of sediment, debris, litter and vegetation within drainage system?                                                                                                          | Monthly                              | Υ      |                         |
| 5.3    | If materials identified in stormwater drains, has it been removed?                                                                                                                                                                  | Monthly                              | N/A    |                         |
| 5.4    | Inflow areas and pit grates have been inspected and clear of litter / debris?                                                                                                                                                       | Monthly                              | Y      |                         |
| 5.5    | Ensure downpipe leaf eaters, first flush devices and litter screens are unblocked and are operating correctly.                                                                                                                      | Monthly                              | Y      |                         |
| 5.6    | Site structires to be regularly checked for erosion and scouring                                                                                                                                                                    | Monthly                              | Y      |                         |
| 5.7    | Treatment areas and structures will be regularly checked for the build up of litter material                                                                                                                                        | Monthly                              | Y      |                         |
| 5.8    | Remove grate and inspect internal walls and base. Remove any collected sediment, debris, litter and vegetation. Inspect and ensure grate is clear following any removal of objects. Ensure flush placement of grate upon refitment. | Quarterly<br>(Mar, Jun,<br>Sep, Dec) | Y      |                         |
| 5.9    | Have all drainage structures been inspected noting any dilapidation, if so have repairs been carried out?                                                                                                                           | Bi-<br>annually<br>(Jun, Dec)        | N/A    |                         |

| Document Title: WORKPLACE INSPECTION CHECKLIST - PERIODIC |              |          |              |                       |              |  |
|-----------------------------------------------------------|--------------|----------|--------------|-----------------------|--------------|--|
| Approved By:                                              | Date Issued: | Version: | Review Date: | Author:               | Page Number: |  |
| Environmental Manager                                     | 21/06/2022   | 1.0      | 21/06/2025   | Environmental Manager | 1 of 4       |  |





| 5.10                                           | Rainwater tank – has tank been checked for evidence of litter and functioning properly                                                                                      | Bi-<br>annually<br>(Jun, Dec)                                            | N/A                   |                                    |
|------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------|------------------------------------|
| 5.11                                           | Rainwater tank – has tank been checked for evidence of access by pests (birds, insects, mosquito larvae ect.)                                                               | Bi-<br>annually<br>(Jun, Dec)                                            | N/A                   |                                    |
| 5.12                                           | Rainwater tank – has structural integrity of tank been inspected? Note any dilapidation or repairs required / completed.                                                    | Bi-<br>annually<br>(Jun, Dec)                                            | N/A                   |                                    |
| 5.13                                           | The sediment chamber of the Ecoceptor will be reqgularly checked and cleaned and any damaged covers replaced.                                                               | Bi-<br>annually<br>(Jun, Dec)                                            | N/A                   |                                    |
| 6. Ver                                         | min and pest management mitigations   N/A                                                                                                                                   | Frequency                                                                | Y/N/NA                | General Comments                   |
| 6.1                                            | Drainage sumps and catch drains will be inspected daily and cleaned regularly to prevent providing a habitat for pests.                                                     | Ongoing                                                                  | Υ                     |                                    |
| 6.2                                            | Has the site been inspected for windblown litter? Any identified litter must be removed and disposed appropriately.                                                         | Ongoing                                                                  | Υ                     |                                    |
| 6.3                                            | All overhead structures and internal roofs are visually inspected weekly to ensure they are kept clean.                                                                     | Ongoing                                                                  | Y                     |                                    |
|                                                |                                                                                                                                                                             | _                                                                        | x/21/212              |                                    |
| 7. Poll                                        | lution management mitigations   N/A                                                                                                                                         | Frequency                                                                | Y/N/NA                | General Comments                   |
| 7.1                                            | Are all dangerous goods stored appropriately according to their ADG classes and compatibility?                                                                              | Daily                                                                    | Υ                     |                                    |
| 7.2                                            | Has training on the pollution incident response management plan been provided in toolbox?                                                                                   | As<br>required                                                           | Υ                     |                                    |
| 0 Eiro                                         | e management mitigations                                                                                                                                                    | Frequency                                                                | Y/N/NA                | General Comments                   |
| o. File                                        | ,                                                                                                                                                                           |                                                                          |                       | -                                  |
| 8.1                                            | Fire extinguishers are positioned at readily accessible points, including on mobile plant                                                                                   | Daily                                                                    | Υ                     |                                    |
| 8.1                                            | Fire extinguishers are positioned at readily accessible points,                                                                                                             | Daily                                                                    | Y Y/N/NA              | General Comments                   |
| 8.1                                            | Fire extinguishers are positioned at readily accessible points, including on mobile plant                                                                                   | Daily                                                                    |                       | General Comments                   |
| 9. Noi<br>9.1                                  | Fire extinguishers are positioned at readily accessible points, including on mobile plant  se and vibration mitigations   N/A                                               | Prequency As                                                             | Y/N/NA                | General Comments  General Comments |
| 9. Noi<br>9.1                                  | Fire extinguishers are positioned at readily accessible points, including on mobile plant  se and vibration mitigations   Are defective plant parked up and not being used? | Prequency As required                                                    | Y/N/NA<br>N/A         |                                    |
| 9. Noi<br>9.1                                  | Fire extinguishers are positioned at readily accessible points, including on mobile plant  se and vibration mitigations                                                     | Prequency As required Frequency                                          | Y/N/NA N/A Y/N/NA     |                                    |
| 9. Noi<br>9.1<br>10. W                         | Fire extinguishers are positioned at readily accessible points, including on mobile plant  se and vibration mitigations                                                     | Frequency As required Frequency Daily                                    | Y/N/NA N/A Y/N/NA Y   |                                    |
| 9. Noi<br>9.1<br>10. W<br>10.1<br>10.2         | Fire extinguishers are positioned at readily accessible points, including on mobile plant  ise and vibration mitigations                                                    | Frequency As required Frequency Daily Daily                              | Y/N/NA N/A  Y/N/NA Y  |                                    |
| 9. Noi<br>9.1<br>10. W<br>10.1<br>10.2         | Fire extinguishers are positioned at readily accessible points, including on mobile plant  ise and vibration mitigations                                                    | Frequency As required Frequency Daily Daily Daily                        | Y/N/NA N/A Y/N/NA Y Y | General Comments                   |
| 9. Noi<br>9.1<br>10. W<br>10.1<br>10.2<br>10.3 | Fire extinguishers are positioned at readily accessible points, including on mobile plant  ise and vibration mitigations                                                    | Frequency As required  Frequency Daily Daily Daily Frequency Bi-annually | Y/N/NA N/A Y/N/NA Y Y | General Comments                   |

| Document Title: WORKPLACE INSPECTION CHECKLIST - PERIODIC                    |  |  |  |  |  |  |  |
|------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Approved By: Date Issued: Version: Review Date: Author: Page Numb            |  |  |  |  |  |  |  |
| Environmental Manager 21/06/2022 1.0 21/06/2025 Environmental Manager 2 of 4 |  |  |  |  |  |  |  |





| 12. Bi | odiversity 🗆 N/A                                                                                                                                | Frequency                            | Y/N/NA | General Comments |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--------|------------------|
| 12.1   | Weed treatment will occur alongside maintenance of landscaping within subject site. This supports compliance with the NSW Biosecurity Act 2015. | Quarterly<br>(Mar, Jun,<br>Sep, Dec) | N/A    |                  |

| Document Title: WORKPLACE INSPECTION CHECKLIST - PERIODIC |              |          |              |                       |              |  |
|-----------------------------------------------------------|--------------|----------|--------------|-----------------------|--------------|--|
| Approved By:                                              | Date Issued: | Version: | Review Date: | Author:               | Page Number: |  |
| Environmental Manager                                     | 21/06/2022   | 1.0      | 21/06/2025   | Environmental Manager | 3 of 4       |  |





| Action Plan - to be transferred as a 'Hazard Report'                  |                         |                 |                      |                |
|-----------------------------------------------------------------------|-------------------------|-----------------|----------------------|----------------|
| Actions required                                                      | Action assigned to      | Date assigned   | Date to be completed | Signature      |
|                                                                       |                         |                 |                      |                |
|                                                                       |                         |                 |                      |                |
|                                                                       |                         |                 |                      |                |
|                                                                       |                         |                 |                      |                |
|                                                                       |                         |                 |                      |                |
|                                                                       |                         |                 |                      |                |
|                                                                       |                         |                 |                      |                |
|                                                                       |                         |                 |                      |                |
|                                                                       |                         |                 |                      |                |
|                                                                       |                         |                 |                      |                |
|                                                                       |                         |                 |                      |                |
|                                                                       |                         |                 |                      |                |
|                                                                       |                         |                 |                      |                |
|                                                                       |                         |                 |                      |                |
|                                                                       |                         |                 |                      |                |
|                                                                       |                         |                 |                      |                |
|                                                                       |                         |                 |                      |                |
|                                                                       |                         |                 |                      |                |
|                                                                       |                         |                 |                      |                |
|                                                                       |                         |                 |                      |                |
|                                                                       |                         |                 |                      |                |
|                                                                       |                         |                 |                      |                |
|                                                                       |                         |                 |                      |                |
|                                                                       |                         |                 |                      |                |
|                                                                       |                         |                 |                      |                |
|                                                                       |                         |                 |                      |                |
| Storage and Reference                                                 | Inspection Comple       | eted By         |                      | Date           |
| To be reviewed at Site Meeting.                                       |                         |                 |                      |                |
| Workplace inspection checklists must be complete the end of each day. | teddaily, stored in the | site file and u | ploaded to Data      | station before |

| Document Title: WORKPLACE INSPECTION CHECKLIST - PERIODIC |              |          |              |                       |              |  |  |
|-----------------------------------------------------------|--------------|----------|--------------|-----------------------|--------------|--|--|
| Approved By:                                              | Date Issued: | Version: | Review Date: | Author:               | Page Number: |  |  |
| Environmental Manager                                     | 21/06/2022   | 1.0      | 21/06/2025   | Environmental Manager | 4 of 4       |  |  |





| Location:                | reDirect – Wetherill Park | Date:      | 30.06.23      |
|--------------------------|---------------------------|------------|---------------|
| Inspection Completed By: | M.Stewart                 | Signature: | M. P. Stewart |

| 1. Ge | neral Management and mitigations   N/A                                               | Frequency   | Y/N/NA | General Comments |
|-------|--------------------------------------------------------------------------------------|-------------|--------|------------------|
| 1.2   | Employees and contractors have been inducted and are suitably trained.               | As required | Υ      |                  |
| 1.3   | Plant and equipment being used is in good working condition at the start of the day? | Daily       | Y      |                  |

| 2. Tra | ffic mitigations                                                                            | Frequency | Y/N/NA | <b>General Comments</b> |
|--------|---------------------------------------------------------------------------------------------|-----------|--------|-------------------------|
| 2.1    | Traffic is continually monitored by Operations Coordinator?                                 | Daily     | Υ      |                         |
| 2.2    | AllI car spaces are free from obstruction and maintained for use by employees and visitors? | Daily     | Υ      |                         |
| 2.3    | Vehicles are entering and leaving the site in forward direction.                            | Daily     | Υ      |                         |

| 3. Aiı | quality, odour and dust mitigations  \[ \sqrt{N/A}                                                       | Frequency | Y/N/NA | <b>General Comments</b> |
|--------|----------------------------------------------------------------------------------------------------------|-----------|--------|-------------------------|
| 3.1    | Good dust management procedures are being implemented (inside building): Sweeper working and being used? | Daily     | Υ      |                         |
| 3.2    | Good dust management procedures are implemented (outside the building): Sweeper working and being used?  | Daily     | Υ      |                         |
| 3.3    | Residual waste has been transported offsite (check general waste bin capacity)?                          | Daily     | Υ      |                         |

| 5. Sto | rmwater mitigations                                                                                                                                                                                                                 | Frequency                            | Y/N/NA        | <b>General Comments</b>                                                             |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|---------------|-------------------------------------------------------------------------------------|
| 5.1    | Are there any spills that have been left unattended?                                                                                                                                                                                | Daily                                | N             |                                                                                     |
| 5.2    | Have storm water drains been inspected for any build up of sediment, debris, litter and vegetation within drainage system?                                                                                                          |                                      | Υ             |                                                                                     |
| 5.3    | If materials identified in stormwater drains, has it been removed?                                                                                                                                                                  | Monthly                              | Y             |                                                                                     |
| 5.4    | Inflow areas and pit grates have been inspected and clear of litter / debris?                                                                                                                                                       | Monthly                              | Y             |                                                                                     |
| 5.5    | Ensure downpipe leaf eaters, first flush devices and litter screens are unblocked and are operating correctly.                                                                                                                      | Monthly                              | Y             |                                                                                     |
| 5.6    | Site structires to be regularly checked for erosion and scouring                                                                                                                                                                    | Monthly                              | Y             |                                                                                     |
| 5.7    | Treatment areas and structures will be regularly checked for the build up of litter material                                                                                                                                        | Monthly                              | Y             |                                                                                     |
| 5.8    | Remove grate and inspect internal walls and base. Remove any collected sediment, debris, litter and vegetation. Inspect and ensure grate is clear following any removal of objects. Ensure flush placement of grate upon refitment. | Quarterly<br>(Mar, Jun,<br>Sep, Dec) | Y Dec<br>2022 | Lift grate,brush out lip for grate<br>and down walls remove debris<br>replace grate |
| 5.9    | Have all drainage structures been inspected noting any dilapidation, if so have repairs been carried out?                                                                                                                           | Bi-<br>annually<br>(Jun, Dec)        | Y Dec<br>2022 | Inspected no action required                                                        |

| Document Title: WORKPLACE INSPECTION CHECKLIST - PERIODIC |              |          |              |                       |              |  |  |
|-----------------------------------------------------------|--------------|----------|--------------|-----------------------|--------------|--|--|
| Approved By:                                              | Date Issued: | Version: | Review Date: | Author:               | Page Number: |  |  |
| Environmental Manager                                     | 21/06/2022   | 1.0      | 21/06/2025   | Environmental Manager | 1 of 4       |  |  |





| 5.10           | Rainwater tank – has tank been checked for evidence of litter                                                                                         | Bi-                           |               |                                     |
|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|---------------|-------------------------------------|
| 3.10           | and functioning properly                                                                                                                              | annually<br>(Jun, Dec)        | Y Dec<br>2022 | Check Basket – no litter            |
| 5.11           | Rainwater tank – has tank been checked for evidence of access by pests (birds, insects, mosquito larvae ect.)                                         | Bi-<br>annually<br>(Jun, Dec) | Y Dec<br>2022 | Empty tank inspect no sign of pests |
| 5.12           | Rainwater tank – has structural integrity of tank been inspected? Note any dilapidation or repairs required / completed.                              | Bi-<br>annually<br>(Jun, Dec) | Y Dec<br>2022 | No repairs required                 |
| 5.13           | The sediment chamber of the Ecoceptor will be reqgularly checked and cleaned and any damaged covers replaced.                                         | Bi-<br>annually<br>(Jun, Dec) | Y Dec<br>2022 | Checked no action required          |
| 6. Vei         | min and pest management mitigations   N/A                                                                                                             | Frequency                     | Y/N/NA        | General Comments                    |
| 6.1            | Drainage sumps and catch drains will be inspected daily and cleaned regularly to prevent providing a habitat for pests.                               | Ongoing                       | Υ             |                                     |
| 6.2            | Has the site been inspected for windblown litter? Any identified litter must be removed and disposed appropriately.                                   | Ongoing                       | Υ             |                                     |
| 6.3            | All overhead structures and internal roofs are visually inspected weekly to ensure they are kept clean.                                               | Ongoing                       | Y             |                                     |
| 7. Pol         | lution management mitigations   N/A                                                                                                                   | Frequency                     | Y/N/NA        | General Comments                    |
| 7.1            | Are all dangerous goods stored appropriately according to their ADG classes and compatibility?                                                        | Daily                         | Υ             |                                     |
| 7.2            | Has training on the pollution incident response management plan been provided in toolbox?                                                             | As<br>required                | Υ             |                                     |
| 8. Fire        | e management mitigations                                                                                                                              | Frequency                     | Y/N/NA        | General Comments                    |
| 8.1            | Fire extinguishers are positioned at readily accessible points, including on mobile plant                                                             | Daily                         | Υ             |                                     |
| 9. No          | ise and vibration mitigations $\square$ N/A                                                                                                           | Frequency                     | Y/N/NA        | General Comments                    |
| 9.1            | Are defective plant parked up and not being used?                                                                                                     | As<br>required                | Υ             |                                     |
| 10. W          | aste management mitigations   N/A                                                                                                                     | Frequency                     | Y/N/NA        | <b>General Comments</b>             |
| 10.1           | All waste stored on site onsite is permitted by the EPL?                                                                                              | Daily                         | Υ             |                                     |
| 10.2           | The total amount of waste stored at the premises is under EPL Authorised Amount?                                                                      | Daily                         | Υ             |                                     |
| 10.3           | The total amount of waste received daily is being recorded via the weighbridges in place?                                                             | Daily                         | Υ             |                                     |
|                |                                                                                                                                                       | Гиодиодом                     | Y/N/NA        | General Comments                    |
| 11. Fl         | ooding mitigations                                                                                                                                    | Frequency                     | .,,           |                                     |
| 11. Fl<br>11.1 | Inspection and maintenance of the Flood Emergency Kit will be undertaken as required to ensure all components are present and in operating condition. | Bi-<br>annually<br>(Jun, Dec) | Y Dec 2022    | Fully stocked and in good condition |

| Document Title: WORKPLACE INSPECTION CHECKLIST - PERIODIC |              |          |              |                       |              |  |  |
|-----------------------------------------------------------|--------------|----------|--------------|-----------------------|--------------|--|--|
| Approved By:                                              | Date Issued: | Version: | Review Date: | Author:               | Page Number: |  |  |
| Environmental Manager                                     | 21/06/2022   | 1.0      | 21/06/2025   | Environmental Manager | 2 of 4       |  |  |





| <b>12.</b> Bi | odiversity   N/A                                                                                                                                | Frequency                            | Y/N/NA        | General Comments |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|---------------|------------------|
| 12.1          | Weed treatment will occur alongside maintenance of landscaping within subject site. This supports compliance with the NSW Biosecurity Act 2015. | Quarterly<br>(Mar, Jun,<br>Sep, Dec) | Y Dec<br>2022 |                  |

| Document Title: WORKPLACE INSPECTION CHECKLIST - PERIODIC |              |          |              |                       |              |  |  |
|-----------------------------------------------------------|--------------|----------|--------------|-----------------------|--------------|--|--|
| Approved By:                                              | Date Issued: | Version: | Review Date: | Author:               | Page Number: |  |  |
| Environmental Manager                                     | 21/06/2022   | 1.0      | 21/06/2025   | Environmental Manager | 3 of 4       |  |  |





| Action Plan - to be transferred as a 'Hazard Report'                  |                         |                 |                      |                |
|-----------------------------------------------------------------------|-------------------------|-----------------|----------------------|----------------|
| Actions required                                                      | Action assigned to      | Date assigned   | Date to be completed | Signature      |
|                                                                       |                         |                 |                      |                |
|                                                                       |                         |                 |                      |                |
|                                                                       |                         |                 |                      |                |
|                                                                       |                         |                 |                      |                |
|                                                                       |                         |                 |                      |                |
|                                                                       |                         |                 |                      |                |
|                                                                       |                         |                 |                      |                |
|                                                                       |                         |                 |                      |                |
|                                                                       |                         |                 |                      |                |
|                                                                       |                         |                 |                      |                |
|                                                                       |                         |                 |                      |                |
|                                                                       |                         |                 |                      |                |
|                                                                       |                         |                 |                      |                |
|                                                                       |                         |                 |                      |                |
|                                                                       |                         |                 |                      |                |
|                                                                       |                         |                 |                      |                |
|                                                                       |                         |                 |                      |                |
|                                                                       |                         |                 |                      |                |
|                                                                       |                         |                 |                      |                |
|                                                                       |                         |                 |                      |                |
|                                                                       |                         |                 |                      |                |
|                                                                       |                         |                 |                      |                |
|                                                                       |                         |                 |                      |                |
|                                                                       |                         |                 |                      |                |
|                                                                       |                         |                 |                      |                |
|                                                                       |                         |                 |                      |                |
| Storage and Reference                                                 | Inspection Comple       | eted By         |                      | Date           |
| To be reviewed at Site Meeting.                                       |                         |                 |                      |                |
| Workplace inspection checklists must be complete the end of each day. | teddaily, stored in the | site file and u | ploaded to Data      | station before |

| Document Title: WORKPLACE INSPECTION CHECKLIST - PERIODIC |              |          |              |                       |              |  |
|-----------------------------------------------------------|--------------|----------|--------------|-----------------------|--------------|--|
| Approved By:                                              | Date Issued: | Version: | Review Date: | Author:               | Page Number: |  |
| Environmental Manager                                     | 21/06/2022   | 1.0      | 21/06/2025   | Environmental Manager | 4 of 4       |  |





| Location:                | reDirect – Wetherill Park | Date:      | 31.07.23      |
|--------------------------|---------------------------|------------|---------------|
| Inspection Completed By: | M.Stewart                 | Signature: | M. P. Stewart |

| 1. Ge | neral Management and mitigations   N/A                                               | Frequency   | Y/N/NA | General Comments |
|-------|--------------------------------------------------------------------------------------|-------------|--------|------------------|
| 1.2   | Employees and contractors have been inducted and are suitably trained.               | As required | Υ      |                  |
| 1.3   | Plant and equipment being used is in good working condition at the start of the day? | Daily       | Y      |                  |

| 2. Tra | ffic mitigations                                                                            | Frequency | Y/N/NA | <b>General Comments</b> |
|--------|---------------------------------------------------------------------------------------------|-----------|--------|-------------------------|
| 2.1    | Traffic is continually monitored by Operations Coordinator?                                 | Daily     | Υ      |                         |
| 2.2    | AllI car spaces are free from obstruction and maintained for use by employees and visitors? | Daily     | Υ      |                         |
| 2.3    | Vehicles are entering and leaving the site in forward direction.                            | Daily     | Υ      |                         |

| 3. Aiı | quality, odour and dust mitigations  \[ \sqrt{N/A}                                                       | Frequency | Y/N/NA | <b>General Comments</b> |
|--------|----------------------------------------------------------------------------------------------------------|-----------|--------|-------------------------|
| 3.1    | Good dust management procedures are being implemented (inside building): Sweeper working and being used? | Daily     | Υ      |                         |
| 3.2    | Good dust management procedures are implemented (outside the building): Sweeper working and being used?  | Daily     | Υ      |                         |
| 3.3    | Residual waste has been transported offsite (check general waste bin capacity)?                          | Daily     | Υ      |                         |

| 5. Sto | ormwater mitigations                                                                                                                                                                                                                | Frequency                            | Y/N/NA | <b>General Comments</b> |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--------|-------------------------|
| 5.1    | Are there any spills that have been left unattended?                                                                                                                                                                                | Daily                                | N      |                         |
| 5.2    | Have storm water drains been inspected for any build up of sediment, debris, litter and vegetation within drainage system?                                                                                                          | Monthly                              | Υ      |                         |
| 5.3    | If materials identified in stormwater drains, has it been removed?                                                                                                                                                                  | Monthly                              | N/A    |                         |
| 5.4    | Inflow areas and pit grates have been inspected and clear of litter / debris?                                                                                                                                                       | Monthly                              | Y      |                         |
| 5.5    | Ensure downpipe leaf eaters, first flush devices and litter screens are unblocked and are operating correctly.                                                                                                                      | Monthly                              | Y      |                         |
| 5.6    | Site structires to be regularly checked for erosion and scouring                                                                                                                                                                    | Monthly                              | Y      |                         |
| 5.7    | Treatment areas and structures will be regularly checked for the build up of litter material                                                                                                                                        | Monthly                              | Y      |                         |
| 5.8    | Remove grate and inspect internal walls and base. Remove any collected sediment, debris, litter and vegetation. Inspect and ensure grate is clear following any removal of objects. Ensure flush placement of grate upon refitment. | Quarterly<br>(Mar, Jun,<br>Sep, Dec) | Y      |                         |
| 5.9    | Have all drainage structures been inspected noting any dilapidation, if so have repairs been carried out?                                                                                                                           | Bi-<br>annually<br>(Jun, Dec)        | N/A    |                         |

| Document Title: WORKPLACE INSPECTION CHECKLIST - PERIODIC |              |          |              |                       |              |  |
|-----------------------------------------------------------|--------------|----------|--------------|-----------------------|--------------|--|
| Approved By:                                              | Date Issued: | Version: | Review Date: | Author:               | Page Number: |  |
| Environmental Manager                                     | 21/06/2022   | 1.0      | 21/06/2025   | Environmental Manager | 1 of 4       |  |





| 5.10                                           | Rainwater tank – has tank been checked for evidence of litter and functioning properly                                                                                      | Bi-<br>annually<br>(Jun, Dec)                                            | N/A                   |                                    |
|------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------|------------------------------------|
| 5.11                                           | Rainwater tank – has tank been checked for evidence of access by pests (birds, insects, mosquito larvae ect.)                                                               | Bi-<br>annually<br>(Jun, Dec)                                            | N/A                   |                                    |
| 5.12                                           | Rainwater tank – has structural integrity of tank been inspected? Note any dilapidation or repairs required / completed.                                                    | Bi-<br>annually<br>(Jun, Dec)                                            | N/A                   |                                    |
| 5.13                                           | The sediment chamber of the Ecoceptor will be reqgularly checked and cleaned and any damaged covers replaced.                                                               | Bi-<br>annually<br>(Jun, Dec)                                            | N/A                   |                                    |
| 6. Ver                                         | min and pest management mitigations   N/A                                                                                                                                   | Frequency                                                                | Y/N/NA                | General Comments                   |
| 6.1                                            | Drainage sumps and catch drains will be inspected daily and cleaned regularly to prevent providing a habitat for pests.                                                     | Ongoing                                                                  | Υ                     |                                    |
| 6.2                                            | Has the site been inspected for windblown litter? Any identified litter must be removed and disposed appropriately.                                                         | Ongoing                                                                  | Υ                     |                                    |
| 6.3                                            | All overhead structures and internal roofs are visually inspected weekly to ensure they are kept clean.                                                                     | Ongoing                                                                  | Y                     |                                    |
|                                                |                                                                                                                                                                             | _                                                                        | x/21/212              |                                    |
| 7. Poll                                        | lution management mitigations   N/A                                                                                                                                         | Frequency                                                                | Y/N/NA                | General Comments                   |
| 7.1                                            | Are all dangerous goods stored appropriately according to their ADG classes and compatibility?                                                                              | Daily                                                                    | Υ                     |                                    |
| 7.2                                            | Has training on the pollution incident response management plan been provided in toolbox?                                                                                   | As<br>required                                                           | Υ                     |                                    |
| 0 Eiro                                         | e management mitigations                                                                                                                                                    | Frequency                                                                | Y/N/NA                | General Comments                   |
| o. File                                        | ,                                                                                                                                                                           |                                                                          |                       | -                                  |
| 8.1                                            | Fire extinguishers are positioned at readily accessible points, including on mobile plant                                                                                   | Daily                                                                    | Υ                     |                                    |
| 8.1                                            | Fire extinguishers are positioned at readily accessible points,                                                                                                             | Daily                                                                    | Y Y/N/NA              | General Comments                   |
| 8.1                                            | Fire extinguishers are positioned at readily accessible points, including on mobile plant                                                                                   | Daily                                                                    |                       | General Comments                   |
| 9. Noi<br>9.1                                  | Fire extinguishers are positioned at readily accessible points, including on mobile plant  se and vibration mitigations   N/A                                               | Prequency As                                                             | Y/N/NA                | General Comments  General Comments |
| 9. Noi<br>9.1                                  | Fire extinguishers are positioned at readily accessible points, including on mobile plant  se and vibration mitigations   Are defective plant parked up and not being used? | Prequency As required                                                    | Y/N/NA<br>N/A         |                                    |
| 9. Noi<br>9.1                                  | Fire extinguishers are positioned at readily accessible points, including on mobile plant  se and vibration mitigations                                                     | Prequency As required Frequency                                          | Y/N/NA N/A Y/N/NA     |                                    |
| 9. Noi<br>9.1<br>10. W                         | Fire extinguishers are positioned at readily accessible points, including on mobile plant  se and vibration mitigations                                                     | Frequency As required Frequency Daily                                    | Y/N/NA N/A Y/N/NA Y   |                                    |
| 9. Noi<br>9.1<br>10. W<br>10.1<br>10.2         | Fire extinguishers are positioned at readily accessible points, including on mobile plant  ise and vibration mitigations                                                    | Frequency As required Frequency Daily Daily                              | Y/N/NA N/A  Y/N/NA Y  |                                    |
| 9. Noi<br>9.1<br>10. W<br>10.1<br>10.2         | Fire extinguishers are positioned at readily accessible points, including on mobile plant  ise and vibration mitigations                                                    | Frequency As required Frequency Daily Daily Daily                        | Y/N/NA N/A Y/N/NA Y Y | General Comments                   |
| 9. Noi<br>9.1<br>10. W<br>10.1<br>10.2<br>10.3 | Fire extinguishers are positioned at readily accessible points, including on mobile plant  ise and vibration mitigations                                                    | Frequency As required  Frequency Daily Daily Daily Frequency Bi-annually | Y/N/NA N/A Y/N/NA Y Y | General Comments                   |

| Document Title: WORKPLACE INSPECTION CHECKLIST - PERIODIC                    |  |  |  |  |  |  |  |
|------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Approved By: Date Issued: Version: Review Date: Author: Page Numb            |  |  |  |  |  |  |  |
| Environmental Manager 21/06/2022 1.0 21/06/2025 Environmental Manager 2 of 4 |  |  |  |  |  |  |  |





| 12. Bi | odiversity 🗆 N/A                                                                                                                                | Frequency                            | Y/N/NA | General Comments |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--------|------------------|
| 12.1   | Weed treatment will occur alongside maintenance of landscaping within subject site. This supports compliance with the NSW Biosecurity Act 2015. | Quarterly<br>(Mar, Jun,<br>Sep, Dec) | N/A    |                  |

| Document Title: WORKPLACE INSPECTION CHECKLIST - PERIODIC |              |          |              |                       |              |  |
|-----------------------------------------------------------|--------------|----------|--------------|-----------------------|--------------|--|
| Approved By:                                              | Date Issued: | Version: | Review Date: | Author:               | Page Number: |  |
| Environmental Manager                                     | 21/06/2022   | 1.0      | 21/06/2025   | Environmental Manager | 3 of 4       |  |





| Action Plan - to be transferred as a 'Hazard Report'                  |                         |                 |                      |                |
|-----------------------------------------------------------------------|-------------------------|-----------------|----------------------|----------------|
| Actions required                                                      | Action assigned to      | Date assigned   | Date to be completed | Signature      |
|                                                                       |                         |                 |                      |                |
|                                                                       |                         |                 |                      |                |
|                                                                       |                         |                 |                      |                |
|                                                                       |                         |                 |                      |                |
|                                                                       |                         |                 |                      |                |
|                                                                       |                         |                 |                      |                |
|                                                                       |                         |                 |                      |                |
|                                                                       |                         |                 |                      |                |
|                                                                       |                         |                 |                      |                |
|                                                                       |                         |                 |                      |                |
|                                                                       |                         |                 |                      |                |
|                                                                       |                         |                 |                      |                |
|                                                                       |                         |                 |                      |                |
|                                                                       |                         |                 |                      |                |
|                                                                       |                         |                 |                      |                |
|                                                                       |                         |                 |                      |                |
|                                                                       |                         |                 |                      |                |
|                                                                       |                         |                 |                      |                |
|                                                                       |                         |                 |                      |                |
|                                                                       |                         |                 |                      |                |
|                                                                       |                         |                 |                      |                |
|                                                                       |                         |                 |                      |                |
|                                                                       |                         |                 |                      |                |
|                                                                       |                         |                 |                      |                |
|                                                                       |                         |                 |                      |                |
|                                                                       |                         |                 |                      |                |
| Storage and Reference                                                 | Inspection Comple       | eted By         |                      | Date           |
| To be reviewed at Site Meeting.                                       |                         |                 |                      |                |
| Workplace inspection checklists must be complete the end of each day. | teddaily, stored in the | site file and u | ploaded to Data      | station before |

| Document Title: WORKPLACE INSPECTION CHECKLIST - PERIODIC |              |          |              |                       |              |  |
|-----------------------------------------------------------|--------------|----------|--------------|-----------------------|--------------|--|
| Approved By:                                              | Date Issued: | Version: | Review Date: | Author:               | Page Number: |  |
| Environmental Manager                                     | 21/06/2022   | 1.0      | 21/06/2025   | Environmental Manager | 4 of 4       |  |





| Location:                | reDirect – Wetherill Park | Date:      | 30.09.22      |
|--------------------------|---------------------------|------------|---------------|
| Inspection Completed By: | M.Stewart                 | Signature: | M. P. Stewart |

| 1. Ge | neral Management and mitigations   N/A                                               | Frequency   | Y/N/NA | General Comments |
|-------|--------------------------------------------------------------------------------------|-------------|--------|------------------|
| 1.2   | Employees and contractors have been inducted and are suitably trained.               | As required | Υ      |                  |
| 1.3   | Plant and equipment being used is in good working condition at the start of the day? | Daily       | Y      |                  |

| 2. Tra | ffic mitigations                                                                            | Frequency | Y/N/NA | <b>General Comments</b> |
|--------|---------------------------------------------------------------------------------------------|-----------|--------|-------------------------|
| 2.1    | Traffic is continually monitored by Operations Coordinator?                                 | Daily     | Υ      |                         |
| 2.2    | AllI car spaces are free from obstruction and maintained for use by employees and visitors? | Daily     | Υ      |                         |
| 2.3    | Vehicles are entering and leaving the site in forward direction.                            | Daily     | Υ      |                         |

| 3. Aiı | quality, odour and dust mitigations  \[ \sqrt{N/A}                                                       | Frequency | Y/N/NA | <b>General Comments</b> |
|--------|----------------------------------------------------------------------------------------------------------|-----------|--------|-------------------------|
| 3.1    | Good dust management procedures are being implemented (inside building): Sweeper working and being used? | Daily     | Υ      |                         |
| 3.2    | Good dust management procedures are implemented (outside the building): Sweeper working and being used?  | Daily     | Υ      |                         |
| 3.3    | Residual waste has been transported offsite (check general waste bin capacity)?                          | Daily     | Υ      |                         |

| 5. Sto | ormwater mitigations                                                                                                                                                                                                                | Frequency                            | Y/N/NA | <b>General Comments</b> |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--------|-------------------------|
| 5.1    | Are there any spills that have been left unattended?                                                                                                                                                                                | Daily                                | N      |                         |
| 5.2    | Have storm water drains been inspected for any build up of sediment, debris, litter and vegetation within drainage system?                                                                                                          | Monthly                              | Υ      |                         |
| 5.3    | If materials identified in stormwater drains, has it been removed?                                                                                                                                                                  | Monthly                              | N/A    |                         |
| 5.4    | Inflow areas and pit grates have been inspected and clear of litter / debris?                                                                                                                                                       | Monthly                              | Y      |                         |
| 5.5    | Ensure downpipe leaf eaters, first flush devices and litter screens are unblocked and are operating correctly.                                                                                                                      | Monthly                              | Y      |                         |
| 5.6    | Site structires to be regularly checked for erosion and scouring                                                                                                                                                                    | Monthly                              | Y      |                         |
| 5.7    | Treatment areas and structures will be regularly checked for the build up of litter material                                                                                                                                        | Monthly                              | Y      |                         |
| 5.8    | Remove grate and inspect internal walls and base. Remove any collected sediment, debris, litter and vegetation. Inspect and ensure grate is clear following any removal of objects. Ensure flush placement of grate upon refitment. | Quarterly<br>(Mar, Jun,<br>Sep, Dec) | Y      | September               |
| 5.9    | Have all drainage structures been inspected noting any dilapidation, if so have repairs been carried out?                                                                                                                           | Bi-<br>annually<br>(Jun, Dec)        | N/A    |                         |

| Document Title: WORKPLACE INSPECTION CHECKLIST - PERIODIC |              |          |              |                       |              |  |
|-----------------------------------------------------------|--------------|----------|--------------|-----------------------|--------------|--|
| Approved By:                                              | Date Issued: | Version: | Review Date: | Author:               | Page Number: |  |
| Environmental Manager                                     | 21/06/2022   | 1.0      | 21/06/2025   | Environmental Manager | 1 of 4       |  |





| 5.10                                           | Rainwater tank – has tank been checked for evidence of litter and functioning properly                                                                                      | Bi-<br>annually<br>(Jun, Dec)                                            | N/A                   |                                    |
|------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------|------------------------------------|
| 5.11                                           | Rainwater tank – has tank been checked for evidence of access by pests (birds, insects, mosquito larvae ect.)                                                               | Bi-<br>annually<br>(Jun, Dec)                                            | N/A                   |                                    |
| 5.12                                           | Rainwater tank – has structural integrity of tank been inspected? Note any dilapidation or repairs required / completed.                                                    | Bi-<br>annually<br>(Jun, Dec)                                            | N/A                   |                                    |
| 5.13                                           | The sediment chamber of the Ecoceptor will be reqgularly checked and cleaned and any damaged covers replaced.                                                               | Bi-<br>annually<br>(Jun, Dec)                                            | N/A                   |                                    |
| 6. Ver                                         | min and pest management mitigations   N/A                                                                                                                                   | Frequency                                                                | Y/N/NA                | General Comments                   |
| 6.1                                            | Drainage sumps and catch drains will be inspected daily and cleaned regularly to prevent providing a habitat for pests.                                                     | Ongoing                                                                  | Υ                     |                                    |
| 6.2                                            | Has the site been inspected for windblown litter? Any identified litter must be removed and disposed appropriately.                                                         | Ongoing                                                                  | Υ                     |                                    |
| 6.3                                            | All overhead structures and internal roofs are visually inspected weekly to ensure they are kept clean.                                                                     | Ongoing                                                                  | Y                     |                                    |
|                                                |                                                                                                                                                                             | _                                                                        | x/21/212              |                                    |
| 7. Poll                                        | lution management mitigations   N/A                                                                                                                                         | Frequency                                                                | Y/N/NA                | General Comments                   |
| 7.1                                            | Are all dangerous goods stored appropriately according to their ADG classes and compatibility?                                                                              | Daily                                                                    | Υ                     |                                    |
| 7.2                                            | Has training on the pollution incident response management plan been provided in toolbox?                                                                                   | As<br>required                                                           | Υ                     |                                    |
| 0 Eiro                                         | e management mitigations                                                                                                                                                    | Frequency                                                                | Y/N/NA                | General Comments                   |
| o. File                                        | ,                                                                                                                                                                           |                                                                          |                       | -                                  |
| 8.1                                            | Fire extinguishers are positioned at readily accessible points, including on mobile plant                                                                                   | Daily                                                                    | Υ                     |                                    |
| 8.1                                            | Fire extinguishers are positioned at readily accessible points,                                                                                                             | Daily                                                                    | Y Y/N/NA              | General Comments                   |
| 8.1                                            | Fire extinguishers are positioned at readily accessible points, including on mobile plant                                                                                   | Daily                                                                    |                       | General Comments                   |
| 9. Noi<br>9.1                                  | Fire extinguishers are positioned at readily accessible points, including on mobile plant  se and vibration mitigations   N/A                                               | Prequency As                                                             | Y/N/NA                | General Comments  General Comments |
| 9. Noi<br>9.1                                  | Fire extinguishers are positioned at readily accessible points, including on mobile plant  se and vibration mitigations   Are defective plant parked up and not being used? | Prequency As required                                                    | Y/N/NA<br>N/A         |                                    |
| 9. Noi<br>9.1                                  | Fire extinguishers are positioned at readily accessible points, including on mobile plant  se and vibration mitigations                                                     | Prequency As required Frequency                                          | Y/N/NA N/A Y/N/NA     |                                    |
| 9. Noi<br>9.1<br>10. W                         | Fire extinguishers are positioned at readily accessible points, including on mobile plant  se and vibration mitigations                                                     | Frequency As required Frequency Daily                                    | Y/N/NA N/A Y/N/NA Y   |                                    |
| 9. Noi<br>9.1<br>10. W<br>10.1<br>10.2         | Fire extinguishers are positioned at readily accessible points, including on mobile plant  ise and vibration mitigations                                                    | Frequency As required Frequency Daily Daily                              | Y/N/NA N/A  Y/N/NA Y  |                                    |
| 9. Noi<br>9.1<br>10. W<br>10.1<br>10.2         | Fire extinguishers are positioned at readily accessible points, including on mobile plant  ise and vibration mitigations                                                    | Frequency As required Frequency Daily Daily Daily                        | Y/N/NA N/A Y/N/NA Y Y | General Comments                   |
| 9. Noi<br>9.1<br>10. W<br>10.1<br>10.2<br>10.3 | Fire extinguishers are positioned at readily accessible points, including on mobile plant  ise and vibration mitigations                                                    | Frequency As required  Frequency Daily Daily Daily Frequency Bi-annually | Y/N/NA N/A Y/N/NA Y Y | General Comments                   |

| Document Title: WORKPLACE INSPECTION CHECKLIST - PERIODIC                    |  |  |  |  |  |  |  |
|------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Approved By: Date Issued: Version: Review Date: Author: Page Numb            |  |  |  |  |  |  |  |
| Environmental Manager 21/06/2022 1.0 21/06/2025 Environmental Manager 2 of 4 |  |  |  |  |  |  |  |





| 12. Bi | odiversity 🗆 N/A                                                                                                                                | Frequency                            | Y/N/NA | General Comments |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--------|------------------|
| 12.1   | Weed treatment will occur alongside maintenance of landscaping within subject site. This supports compliance with the NSW Biosecurity Act 2015. | Quarterly<br>(Mar, Jun,<br>Sep, Dec) | N/A    |                  |

| Document Title: WORKPLACE INSPECTION CHECKLIST - PERIODIC |              |          |              |                       |              |  |
|-----------------------------------------------------------|--------------|----------|--------------|-----------------------|--------------|--|
| Approved By:                                              | Date Issued: | Version: | Review Date: | Author:               | Page Number: |  |
| Environmental Manager                                     | 21/06/2022   | 1.0      | 21/06/2025   | Environmental Manager | 3 of 4       |  |





| Action Plan - to I                                                    | be transferred as a 'Ha | zard Report'    |                      |                |
|-----------------------------------------------------------------------|-------------------------|-----------------|----------------------|----------------|
| Actions required                                                      | Action assigned to      | Date assigned   | Date to be completed | Signature      |
|                                                                       |                         |                 |                      |                |
|                                                                       |                         |                 |                      |                |
|                                                                       |                         |                 |                      |                |
|                                                                       |                         |                 |                      |                |
|                                                                       |                         |                 |                      |                |
|                                                                       |                         |                 |                      |                |
|                                                                       |                         |                 |                      |                |
|                                                                       |                         |                 |                      |                |
|                                                                       |                         |                 |                      |                |
|                                                                       |                         |                 |                      |                |
|                                                                       |                         |                 |                      |                |
|                                                                       |                         |                 |                      |                |
|                                                                       |                         |                 |                      |                |
|                                                                       |                         |                 |                      |                |
|                                                                       |                         |                 |                      |                |
|                                                                       |                         |                 |                      |                |
|                                                                       |                         |                 |                      |                |
|                                                                       |                         |                 |                      |                |
|                                                                       |                         |                 |                      |                |
|                                                                       |                         |                 |                      |                |
|                                                                       |                         |                 |                      |                |
|                                                                       |                         |                 |                      |                |
|                                                                       |                         |                 |                      |                |
|                                                                       |                         |                 |                      |                |
|                                                                       |                         |                 |                      |                |
|                                                                       |                         |                 |                      |                |
| Storage and Reference                                                 | Inspection Comple       | eted By         |                      | Date           |
| To be reviewed at Site Meeting.                                       |                         |                 |                      |                |
| Workplace inspection checklists must be complete the end of each day. | teddaily, stored in the | site file and u | ploaded to Data      | station before |

|                       | Document Title: WORKPLACE INSPECTION CHECKLIST - PERIODIC |          |              |                       |              |  |  |  |  |  |
|-----------------------|-----------------------------------------------------------|----------|--------------|-----------------------|--------------|--|--|--|--|--|
| Approved By:          | Date Issued:                                              | Version: | Review Date: | Author:               | Page Number: |  |  |  |  |  |
| Environmental Manager | 21/06/2022                                                | 1.0      | 21/06/2025   | Environmental Manager | 4 of 4       |  |  |  |  |  |

## Appendix B: Field Records



Monitoring Round: S20102\_10 Feb 2023 \_1

#### **Location Visit**

Site ID S20102 Monitoring Zone

Location Code SW2

Arrival Date/Time 10/02/2023 08:16AM Departure Date/Time 10/02/2023 08:17AM

Executed By Bec Chapple

Weather Sunny

Comments

**Authorisation** 

Checked By

**Date Checked** 

#### **Sample Data**

Sampled Date/Time 10/02/2023 08:17AM

Field ID SW2

Sample Depth From

(m)

Sample Depth To

Sample Type Normal

**Sample Comments** 

Matrix Type Water

#### Sample Observations (purge end)

Sample Colour (Description) light brown
Sample Odour (Description) no odour
Sample Sheen (Description) no sheen

Sample Turbidity (Description) Moderately turbid

#### **QA Samples**

QA Sample ID (1)

QA Sample ID (2)

QA Sample ID (3)

QA Sample ID (4)

#### **Field Chemistry**

Temp 22.2 oC ( - )

DO 3.85 mg/L ( - )

EC 365.7 uS/cm ( - )

pH 7.04 - ( - )
Redox 215.3 mV ( - )



Monitoring Round: S20102\_10 Feb 2023 \_1

#### **Location Visit**

Site ID S20102 Monitoring Zone

Location Code SW1

Arrival Date/Time 10/02/2023 08:40AM Departure Date/Time 10/02/2023 08:42AM

**Executed By** Bec Chapple

Weather Comments

**Authorisation** 

**Checked By** 

**Date Checked** 

#### **Sample Data**

Sampled Date/Time 10/02/2023 08:42AM

Field ID SW1

Sample Depth From

(m)

Sample Depth To

Sample Type Normal

**Sample Comments** 

Matrix Type Water

#### Sample Observations (purge end)

Sample Colour (Description) light brown
Sample Odour (Description) no odour
Sample Sheen (Description) no sheen

Sample Turbidity (Description) Moderately turbid

#### **QA Samples**

QA Sample ID (1)

QA Sample ID (2)

QA Sample ID (3)

QA Sample ID (4)

#### **Field Chemistry**

Temp 21.8 oC ( - )
DO 4.23 mg/L ( - )

EC 196.2 uS/cm ( - )

pH 7.54 - ( - )

**Redox** 219.6 mV ( - )



Project number: \$20102

Name: HY

Date: 14/8/23

| 2:0 | 2 | 9  | M   | 7                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | W               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1  |     |   |    |      |    | pal  | e    | br  | Owi | 7,   | ne  | 0   | da   | ×   | 100 | -   | she  | en, | M   | od   | era- | ely      | 10  | 1/c |
|-----|---|----|-----|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----|---|----|------|----|------|------|-----|-----|------|-----|-----|------|-----|-----|-----|------|-----|-----|------|------|----------|-----|-----|
|     |   |    |     | -                                 | T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C  |     |   |    |      | (  | olle | 100  | d . | Ga  | 1    | de  | se  | to   | 4   | he  | bo  | How  | 10  | f   | cha  | nne  | 1.       |     |     |
|     |   |    |     | I                                 | 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5               | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | M  | 9   | 1 | L  |      |    |      |      |     |     |      |     |     |      |     |     |     |      |     |     |      |      |          |     |     |
|     |   |    |     |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |     | 1 | C  | M    |    |      |      |     |     |      |     |     |      |     |     |     |      |     |     |      |      |          |     |     |
|     |   |    |     | -                                 | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3               | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |     |   |    |      |    |      |      |     |     |      |     |     |      |     |     |     |      |     |     |      |      |          |     |     |
|     |   |    |     | 0                                 | RP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.              | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | m  | V   |   |    |      |    |      |      |     |     |      |     |     |      |     | *   |     |      |     |     |      |      |          |     | -   |
| 2:1 | 5 | P  | M   | >                                 | St                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | te              | d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | a  | isi | 2 | 51 | 10r- | #1 | 1    | Ple  | >   | 201 | 100  | -A  |     | QI   | C   |     |     |      |     |     |      |      |          |     |     |
| 2:1 |   |    |     |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |     |   |    |      |    | D    | id   | n   | 4 , | ai   | 7   | 5   | 10   | m · | 1   |     |      |     |     |      |      |          |     |     |
|     |   |    |     |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |     |   |    |      |    |      |      |     |     |      |     |     |      |     |     |     |      |     |     |      |      |          |     |     |
| 26  | S | an | npl | es                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |     |   |    |      |    |      |      |     |     |      |     |     |      |     |     |     |      |     | -   |      |      |          |     | +   |
|     |   |    | Q   | C                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |     |   | M  | الما | 3  |      |      |     |     |      |     |     |      |     |     |     |      | •   |     |      |      |          |     |     |
|     |   |    | Q   | CT                                | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    | -   |   | M  | w    | 3  |      |      |     |     |      |     |     |      |     |     |     |      |     |     |      |      |          |     |     |
|     |   |    | Q   | C                                 | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    | -   |   | R  | nse  | ak | 9    |      |     |     |      |     |     |      |     |     |     |      |     |     |      |      |          |     |     |
|     |   |    | Q   | C                                 | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    | -   |   | 7  | 3    |    |      |      |     |     |      |     |     |      |     |     |     |      |     |     |      |      |          |     |     |
|     |   |    | Q   | C                                 | 5 c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    | -   |   | 7  | 5    |    |      |      |     |     |      |     |     |      |     |     |     |      |     |     |      |      |          |     |     |
|     |   |    |     |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |     |   |    |      |    |      |      |     |     |      |     |     |      |     |     |     |      |     |     |      |      |          |     |     |
|     |   |    | •   | -7                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | W               | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |     |   |    |      |    | P    | ate  | 2   | wr  | rite | , 1 | 10  | od   | OU  | 7 n | 0.  | she  | en, | 5   | ligh | +14  | to       | bid | •   |
|     |   |    |     |                                   | r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Silver Si | 2               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    | -   |   |    |      |    | C    | 0116 | ch  | d   | fron | 1   | mi  | ddle | 2   | of  | che | nne  | . 1 |     |      |      |          |     |     |
|     |   |    |     | D                                 | 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4               | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 17 | 21  | L |    |      |    |      |      |     |     |      |     |     |      |     |     |     |      |     |     |      |      | K        |     |     |
|     |   |    |     | SHOOLSON BACK                     | The Part of the Pa | DESCRIPTION OF THE PERSON OF T | CALL TO SOLE OF | THE RESERVE TO SERVE | M. | \$  | 1 | co | 2    |    | SH   | ar   | ed  | 12  | ieni | ng  | ين  | st   | af. | fer | 1   | stav | ted | 1 4 | olle | ctiv | 3        |     |     |
|     |   |    |     | AND DESCRIPTION OF REAL PROPERTY. | H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CONTROL SO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | STATEMENT A     | THE RESIDENCE OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |     | - |    |      |    | 17   | re   | sa  | nol | e    | H   | las | 0    | an  | 1   | W   | Her  | low | 61  | in   |      | L        |     |     |
|     |   |    |     | d                                 | RP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | M  | 1   |   |    |      |    | 01   | 450  | h   | 1.  |      |     | tor | 6    | 0   | 400 | _ ? | of   | 6   | -11 | 1    | low  | Jec<br>t |     |     |

### Appendix C: Calibration Certificates



### Interface Meter Heron H.Oil

| Company Name   | WAM Scientific                                 |
|----------------|------------------------------------------------|
| Office Address | 26 Bungarra Crescent, Chipping Norton NSW 2170 |
| Phone Number   | +61 405 241 484                                |
| Contact Name   | William Pak                                    |
| Instrument     | Heron H.Oil Interface Meter (30m)              |
| Serial Number  | 01-7967                                        |
| Client Name    | Bec Chapple (Senversa)                         |
| Project Number | S20102                                         |

|                       | Instrument Check             |   |                                                              |  |  |  |  |  |  |  |
|-----------------------|------------------------------|---|--------------------------------------------------------------|--|--|--|--|--|--|--|
| Item                  | Item Test                    |   | Comments                                                     |  |  |  |  |  |  |  |
| 9V Battery            | Klein Tools MM300 Multimeter | ✓ | Battery voltage reading above 7.9V                           |  |  |  |  |  |  |  |
| Battery Box           | Check                        | ✓ | No damage                                                    |  |  |  |  |  |  |  |
| Face and Back Plates  | Check                        | ✓ | No damage                                                    |  |  |  |  |  |  |  |
| Thumb Screws          | Check                        | ✓ | Rubber ends intact                                           |  |  |  |  |  |  |  |
| Tape Hangar/Protector | Check                        | ✓ | No damage                                                    |  |  |  |  |  |  |  |
| On/Off Button         | Operation                    | ✓ | Button is functional                                         |  |  |  |  |  |  |  |
| Buzzer                | Operation                    | ✓ | Intermittent tone in H <sub>2</sub> O, solid tone in product |  |  |  |  |  |  |  |
| LED Signal Light      | Operation                    | ✓ | LED light functional – green and red                         |  |  |  |  |  |  |  |
| Probe                 | Operation/Check              | ✓ | Decontaminated, cleaned and tested                           |  |  |  |  |  |  |  |
| Tape                  | Condition/Check              | ✓ | Decontaminated and cleaned, no damage                        |  |  |  |  |  |  |  |
| Connection            | Connection Check             |   | Probe and link connected correctly and tightly               |  |  |  |  |  |  |  |
| РСВ                   | Operation                    | ✓ | Unit is fully functional                                     |  |  |  |  |  |  |  |
| Electronics Panel     | Orientation                  | ✓ | Correctly aligned                                            |  |  |  |  |  |  |  |

| Instrument Readings |              |                |  |  |  |  |  |  |
|---------------------|--------------|----------------|--|--|--|--|--|--|
| Product             | Buzzer       | LED Light      |  |  |  |  |  |  |
| H₂O                 | Intermittent | Blinking – Red |  |  |  |  |  |  |
| Petroleum           | Solid        | Steady – Red   |  |  |  |  |  |  |

#### Declaration

**WAM Scientific** certifies that the above instrument was successfully tested according to manufacturer's standards and all necessary checks were conducted to ensure the instrument was fully operational prior to dispatch. The interface meter was decontaminated, cleaned and tested with a mixture of tap water and petrol, shielded from ambient light.

| Checked By       | William Pak |
|------------------|-------------|
| Calibration Date | 01/02/2023  |
| Calibration Due  | 01/08/2023  |





### **Water Quality Meter YSI Professional Plus**

(min 4.31 uA - max 8.00 uA) Avg 6.15 uA

| Company Name   | WAM Scientific                                               |
|----------------|--------------------------------------------------------------|
| Office Address | 26 Bungarra Crescent, Chipping Norton NSW 2170               |
| Phone Number   | +61 405 241 484                                              |
| Contact Name   | William Pak                                                  |
| Instrument     | YSI Professional Plus Water Quality Meter w/ 1m Quatro Cable |
| Serial Number  | 21A102654                                                    |
| Client Name    | Bec Chapple (Senversa)                                       |
| Project Number | S20102                                                       |
| Comments       | -                                                            |

|                               | Instrun                      | nent Check  |                                                   |
|-------------------------------|------------------------------|-------------|---------------------------------------------------|
| Item                          | Test                         | Test Passed | Comments                                          |
| 2 x Alkaline C-size Batteries | Klein Tools MM300 Multimeter | ✓           | Both batteries reading above 2.9V                 |
| Battery Saver Function        | Operation                    | ✓           | Automatically turns off after 60 minutes if idle  |
| Unit Display                  | Operation                    | ✓           | Screen visible, no damage                         |
| Keypad                        | Operation                    | ✓           | Responsive, no damage                             |
| Connection Port and Cable     | Condition/Check              | ✓           | Clean, no damage                                  |
| Monitor Housing               | Condition/Check              | ✓           | No damage                                         |
| Firmware                      | Version                      | ✓           | 4.0.0                                             |
| pH Probe                      | Condition/Calibration        | ✓           | Calibrated and conforms to manufacturer's specs   |
| pH millivolts for pH 7.00     | Calibration                  | ✓           | pH 7.00 calibration range between 0 mV ± 50 mV    |
| pH millivolts for pH 4.00     | Calibration                  | ✓           | pH 4 mV range +165 to +180 from 7 buffer mV value |
| pH slope                      | Calibration                  | ✓           | Range between 55 to 60 mV/pH (ideal value 59 mV)  |
| Response time < 90 seconds    | Calibration                  | ✓           | Responds to correct value within 90 seconds       |
| ORP Probe                     | Condition/Calibration        | ✓           | Calibrated and conforms to manufacturer's specs   |
| ORP Reading                   | Calibration                  | ✓           | Within ± 80 mV of reference Zobell Reading        |
| Response time < 90 seconds    | Calibration                  | ✓           | Responds to correct value within 90 seconds       |
| Conductivity/Temp Probe       | Condition/Calibration        | ✓           | Calibrated and conforms to manufacturer's specs   |
| Conductivity Cell             | Calibration                  | ✓           | Conductivity cell constant 5.0 ± 1.0 in GLP file  |
| Clean Sensor Readings         | Calibration                  | ✓           | Clean sensor reads less than 3 uS/cm in dry air   |
| Dissolved Oxygen Probe        | Condition/Calibration        | ✓           | Calibrated and conforms to manufacturer's specs   |
| DO Cap                        | Condition/Calibration        | ✓           | 1.25 mil PE membrane (yellow membrane)            |
| DO Sensor in Use              | Condition                    | ✓           | Polarographic DO sensor                           |

Calibration Value Parameter Standard Used Reference No. Observed

Calibration

| remperature                   | Centre 370 Thermometer              | Room Temp.    | 26.6  | 26.5  | 26.6  | C     |
|-------------------------------|-------------------------------------|---------------|-------|-------|-------|-------|
| pН                            | pH 4.00                             | 386466        | 4.01  | 4.04  | 4.01  | рН    |
| рН                            | pH 7.00                             | 387329        | 7.00  | 6.96  | 7.00  | рН    |
| Conductivity                  | 2760 μs/cm at 25°C                  | 388521        | 2760  | 2797  | 2760  | μs/cm |
| ORP (Ref. check only)         | Zobell A & B                        | 380835/382785 | 229.9 | 223.8 | 229.9 | mV    |
| Zero Dissolved O <sub>2</sub> | NaSO₃ in Distilled H <sub>2</sub> O | 389912        | 0.0   | 0.3   | 0.0   | %     |
| 100% Dissolved O <sub>2</sub> | 100% Air Saturated H₂O              | Fresh Air     | 100.0 | 108.1 | 100.0 | %     |
|                               | •                                   | <u> </u>      |       |       |       |       |

**Instrument Readings** 

#### 7Declaration

WAM Scientific certifies that the above instrument was successfully tested according to manufacturer's standards and all necessary checks were conducted to ensure the instrument was fully operational prior to dispatch. The calibration data supplied was obtained in accordance with manufacturer's specifications using solutions of known values.

| Calibrated By           | William Pak |
|-------------------------|-------------|
| <b>Calibration Date</b> | 01/02/2023  |
| <b>Calibration Due</b>  | 01/08/2023  |



DO Sensor Value

Actual

Units



### Interface Meter Heron H.Oil

| Company Name                                                  | WAM Scientific                    |  |  |
|---------------------------------------------------------------|-----------------------------------|--|--|
| Office Address 26 Bungarra Crescent, Chipping Norton NSW 2170 |                                   |  |  |
| Phone Number                                                  | +61 405 241 484                   |  |  |
| Contact Name                                                  | William Pak                       |  |  |
| Instrument                                                    | Heron H.Oil Interface Meter (60m) |  |  |
| Serial Number                                                 | 01-8640                           |  |  |
| Client Name                                                   | Bec Chapple (Senversa)            |  |  |
| Project Number                                                | S20102                            |  |  |

| Instrument Check      |                              |             |                                                              |  |  |  |
|-----------------------|------------------------------|-------------|--------------------------------------------------------------|--|--|--|
| Item                  | Test                         | Test Passed | Comments                                                     |  |  |  |
| 9V Battery            | Klein Tools MM300 Multimeter | ✓           | Battery voltage reading above 7.9V                           |  |  |  |
| Battery Box           | Check                        | ✓           | No damage                                                    |  |  |  |
| Face and Back Plates  | Check                        | ✓           | No damage                                                    |  |  |  |
| Thumb Screws          | Check                        | ✓           | Rubber ends intact                                           |  |  |  |
| Tape Hangar/Protector | Check                        | ✓           | No damage                                                    |  |  |  |
| On/Off Button         | Operation                    | ✓           | Button is functional                                         |  |  |  |
| Buzzer                | Operation                    | ✓           | Intermittent tone in H <sub>2</sub> O, solid tone in product |  |  |  |
| LED Signal Light      | Operation                    | ✓           | LED light functional – green and red                         |  |  |  |
| Probe                 | Operation/Check              | ✓           | Decontaminated, cleaned and tested                           |  |  |  |
| Tape                  | Condition/Check              | ✓           | Decontaminated and cleaned, no damage                        |  |  |  |
| Connection            | Check                        | ✓           | Probe and link connected correctly and tightly               |  |  |  |
| PCB                   | Operation                    | ✓           | Unit is fully functional                                     |  |  |  |
| Electronics Panel     | Orientation                  | ✓           | Correctly aligned                                            |  |  |  |

| Instrument Readings      |              |                |  |  |  |
|--------------------------|--------------|----------------|--|--|--|
| Product Buzzer LED Light |              |                |  |  |  |
| H₂O                      | Intermittent | Blinking – Red |  |  |  |
| Petroleum                | Solid        | Steady – Red   |  |  |  |

#### **Declaration**

**WAM Scientific** certifies that the above instrument was successfully tested according to manufacturer's standards and all necessary checks were conducted to ensure the instrument was fully operational prior to dispatch. The interface meter was decontaminated, cleaned and tested with a mixture of tap water and petrol, shielded from ambient light.

| Checked By       | William Pak |
|------------------|-------------|
| Calibration Date | 30/07/2023  |
| Calibration Due  | 30/01/2024  |



WAM Scientific: Sydney Office - Clemton Park 16 Lawn Avenue CLEMTON PARK NSW 2206 T: +61 405 241 484 E: rentals@wamscientific.com.au Website: www.wamscientific.com.au Alternate Email Addresses: admin@wamscientific.com.au accounts@wamscientific.com.au sales@wamscientific.com.au service@wamscientific.com.au



### Water Quality Meter YSI Professional Plus

| Company Name   | WAM Scientific                                      |
|----------------|-----------------------------------------------------|
| Company Name   | WAIN Scientific                                     |
| Office Address | 26 Bungarra Crescent, Chipping Norton NSW 2170      |
| Phone Number   | +61 405 241 484                                     |
| Contact Name   | William Pak                                         |
| Instrument     | YSI Pro Plus Water Quality Meter w/ 1m Quatro Cable |
| Serial Number  | 20B122031                                           |
| Client Name    | Hayley Yellowlees/Chris Redford (Senversa)          |
| Project Number | S20049                                              |
| Comments       | -                                                   |

| Instrument Check              |                              |             |                                                   |  |  |  |
|-------------------------------|------------------------------|-------------|---------------------------------------------------|--|--|--|
| Item                          | Test                         | Test Passed | Comments                                          |  |  |  |
| 2 x Alkaline C-size Batteries | Klein Tools MM300 Multimeter | ✓           | Both batteries reading above 2.9V                 |  |  |  |
| Battery Saver Function        | Operation                    | ✓           | Automatically turns off after 60 minutes if idle  |  |  |  |
| Unit Display                  | Operation                    | ✓           | Screen visible, no damage                         |  |  |  |
| Keypad                        | Operation                    | ✓           | Responsive, no damage                             |  |  |  |
| Connection Port and Cable     | Condition/Check              | ✓           | Clean, no damage                                  |  |  |  |
| Monitor Housing               | Condition/Check              | ✓           | No damage                                         |  |  |  |
| Firmware                      | Version                      | ✓           | 4.0.0                                             |  |  |  |
| pH Probe                      | Condition/Calibration        | ✓           | Calibrated and conforms to manufacturer's specs   |  |  |  |
| pH millivolts for pH 7.00     | Calibration                  | ✓           | pH 7.00 calibration range between 0 mV ± 50 mV    |  |  |  |
| pH millivolts for pH 4.00     | Calibration                  | ✓           | pH 4 mV range +165 to +180 from 7 buffer mV value |  |  |  |
| pH slope                      | Calibration                  | ✓           | Range between 55 to 60 mV/pH (ideal value 59 mV)  |  |  |  |
| Response time < 90 seconds    | Calibration                  | ✓           | Responds to correct value within 90 seconds       |  |  |  |
| ORP Probe                     | Condition/Calibration        | ✓           | Calibrated and conforms to manufacturer's specs   |  |  |  |
| ORP Reading                   | Calibration                  | ✓           | Within ± 80 mV of reference Zobell Reading        |  |  |  |
| Response time < 90 seconds    | Calibration                  | ✓           | Responds to correct value within 90 seconds       |  |  |  |
| Conductivity/Temp Probe       | Condition/Calibration        | ✓           | Calibrated and conforms to manufacturer's specs   |  |  |  |
| Conductivity Cell             | Calibration                  | ✓           | Conductivity cell constant 5.0 ± 1.0 in GLP file  |  |  |  |
| Clean Sensor Readings         | Calibration                  | ✓           | Clean sensor reads less than 3 uS/cm in dry air   |  |  |  |
| Dissolved Oxygen Probe        | Condition/Calibration        | ✓           | Calibrated and conforms to manufacturer's specs   |  |  |  |
| DO Cap                        | Condition/Calibration        | ✓           | 1.25 mil PE membrane (yellow membrane)            |  |  |  |
| DO Sensor in Use              | Condition                    | ✓           | Polarographic DO sensor                           |  |  |  |
| DO Sensor Value               | Calibration                  | ✓           | (min 4.31 uA - max 8.00 uA) Avg 6.15 uA           |  |  |  |

Instrument Readings

|                               | ilisti ullielit nedulligs           |               |                   |          |        |       |  |  |
|-------------------------------|-------------------------------------|---------------|-------------------|----------|--------|-------|--|--|
| Parameter                     | Standard Used                       | Reference No. | Calibration Value | Observed | Actual | Units |  |  |
| Temperature                   | Centre 370 Thermometer              | Room Temp.    | 14.2              | 14.6     | 14.2   | °C    |  |  |
| pН                            | pH 4.00                             | 386466        | 4.01              | 4.05     | 4.01   | рН    |  |  |
| pН                            | pH 7.00                             | 387329        | 7.00              | 7.07     | 7.00   | рН    |  |  |
| Conductivity                  | 2760 μs/cm at 25°C                  | 388521        | 2760              | 2629     | 2760   | μs/cm |  |  |
| ORP (Ref. check only)         | Zobell A & B                        | 380835/382785 | 253.2             | 259.6    | 253.2  | mV    |  |  |
| Zero Dissolved O <sub>2</sub> | NaSO₃ in Distilled H <sub>2</sub> O | 389912        | 0.0               | 0.1      | 0.0    | %     |  |  |
| 100% Dissolved O <sub>2</sub> | 100% Air Saturated H₂O              | Fresh Air     | 100.0             | 100.4    | 100.0  | %     |  |  |

#### Declaration

**WAM Scientific** certifies that the above instrument was successfully tested according to manufacturer's standards and all necessary checks were conducted to ensure the instrument was fully operational prior to dispatch. The calibration data supplied was obtained in accordance with manufacturer's specifications using solutions of known values.

| Calibrated By    | William Pak |
|------------------|-------------|
| Calibration Date | 14/08/2023  |
| Calibration Due  | 14/02/2024  |



### Appendix D: Data Validation



| Job Number:   | S20102                   |
|---------------|--------------------------|
| Report Title: | Surface Water Monitoring |
| Client:       | ReDirect Recycling       |
|               |                          |
|               |                          |
| Completed By: | Bec Chapple              |
| Date:         | 5-Sep-23                 |
| Verified By:  |                          |
| D-4           |                          |

| SAMPLE        |           | SAMPLE        |           |  |
|---------------|-----------|---------------|-----------|--|
| DELIVERY      | ES2304342 | DELIVERY      | ES2304011 |  |
| GROUP (SDG):  |           | GROUP (SDG):  |           |  |
| Laboratory:   | ALS       | Laboratory:   | ALS       |  |
| Sample Dates: | 10-Feb-23 | Sample Dates: | 8-Feb-23  |  |
| Sample Media: | Water     | Sample Media: | Water     |  |

| Quality Assurance                                 | Objectives & Measure                                                                                                | Acceptance Criteria                                                                   | Source of Information                                                      | Acceptance Criteria | Notes/Details of Nonconformance                                                                                            | Accentance Criteria | Notes/Details of Nonconformance                                                                                            |
|---------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|----------------------------------------------------------------------------|---------------------|----------------------------------------------------------------------------------------------------------------------------|---------------------|----------------------------------------------------------------------------------------------------------------------------|
| Process                                           |                                                                                                                     | ·                                                                                     |                                                                            | Met?                | INOTES/Details of Noticonformatice                                                                                         | Met?                | Notes/Details of Noticonformance                                                                                           |
| Standard Procedures                               | Standard field sampling procedures and forms used                                                                   | forms used.                                                                           | Borelogs, field sheets, COCs, data tables                                  | Yes                 |                                                                                                                            | Yes                 |                                                                                                                            |
| Equipment Calibration                             | All equipment calibrated in accordance with manufacturers specifications                                            | manufacturers specifications.                                                         | Calibration Certificates / Records                                         | Yes                 |                                                                                                                            | Yes                 |                                                                                                                            |
| Testing Method Accreditation                      | NATA accredited methods used for all analyses determined                                                            | Primary and secondary laboratories to use NATA accredited methods for all analytes    | Laboratory Report                                                          | Yes                 |                                                                                                                            | Yes                 |                                                                                                                            |
| Quality Control Sampling                          | Field QC sampling frequency in accordance with AS4482.1                                                             | determined.<br>1 Field (Intra-laboratory) Duplicates - ≥ 1 in 20                      | QA/QC register (within field book)                                         | N/A                 | Relevant intra-lab QC samples for this monitoring were                                                                     | Yes                 |                                                                                                                            |
| Frequency                                         | 2005                                                                                                                | primary samples. (note that PFAS NEMP recommends 1 in 10                              |                                                                            |                     | present in ES2304011.                                                                                                      |                     |                                                                                                                            |
|                                                   |                                                                                                                     | for PFAS investigations)                                                              |                                                                            |                     |                                                                                                                            |                     |                                                                                                                            |
|                                                   |                                                                                                                     | Secondary (inter-laboratory) duplicates - ≥ 1 in 20 primary samples.                  | QA/QC register (within field book)                                         |                     | Relevant inter-lab QC samples for this monitoring were present in 316159.                                                  | N/A                 |                                                                                                                            |
|                                                   |                                                                                                                     | (note that PFAS NEMP recommends 1 in 10 for PFAS investigations)                      |                                                                            |                     | present in 310139.                                                                                                         |                     |                                                                                                                            |
|                                                   |                                                                                                                     | Rinsate Blanks - ≥ 1 per day, per matrix per                                          | QA/QC register (within field book)                                         | N/A                 | Relevant intra-lab QC samples for this monitoring were                                                                     | Yes                 | QC301                                                                                                                      |
|                                                   |                                                                                                                     | equipment.  Trip Blanks - ≥ 1 per esky containing                                     | QA/QC register (within field book)                                         | N/A                 | present in ES2304011.  Relevant intra-lab QC samples for this monitoring were                                              | Yes                 | QC401                                                                                                                      |
|                                                   | Laboratory QC analysis frequency in accordance with                                                                 | samples for volatiles.  Laboratory Duplicates - at least 1 in 10                      | Laboratory Reports                                                         | No                  | present in ES2304011.  A laboratory duplicate for PAH/Phenols and TRH-                                                     | No                  | A laboratory duplicate for PAH/Phenols and TRH-                                                                            |
|                                                   | NEPC 2013                                                                                                           | analyses or 1 per process batch.                                                      |                                                                            |                     | Semivolatile fraction was not analysed, resulting in a non-<br>conformance for frequency for this analysis. Not considered | 1                   | Semivolatile fraction was not analysed, resulting in a non-<br>conformance for frequency for this analysis. Not considered |
|                                                   |                                                                                                                     |                                                                                       |                                                                            |                     | to impact upon assessment of accuracy, precision and comparability since the intra-laboratory and inter-laboratory         |                     | to impact upon assessment of accuracy, precision and comparability since the intra-laboratory and inter-laboratory         |
|                                                   |                                                                                                                     |                                                                                       |                                                                            |                     | field duplicates were analysed for PAH/ phenols and TRH semivolatile fraction and were DQI compliant.                      |                     | field duplicates were analysed for PAH/ phenols and TRH semivolatile fraction and were DQI compliant.                      |
|                                                   |                                                                                                                     | Method Blanks - at least 1 per process                                                | Laboratory Reports                                                         | Yes                 |                                                                                                                            | Yes                 |                                                                                                                            |
|                                                   |                                                                                                                     | batch.                                                                                |                                                                            |                     |                                                                                                                            |                     |                                                                                                                            |
|                                                   |                                                                                                                     | Surrogate Recoveries - all samples spiked where appropriate (e.g. chromatographic     | Laboratory Reports                                                         | Yes                 |                                                                                                                            | Yes                 |                                                                                                                            |
|                                                   |                                                                                                                     | analysis of organics).  Laboratory Control Samples - at least 1 per                   | Laboratory Reports                                                         | Yes                 |                                                                                                                            | Yes                 |                                                                                                                            |
|                                                   |                                                                                                                     | process batch.  Matrix Spikes - at least 1 per matrix type per                        | Laboratory Reports                                                         | No                  | A matrix spike for PAH/Phenols and TRH-Semivolatile                                                                        | No                  | A matrix spike for PAH/Phenols, dissolved metals and TRH-                                                                  |
|                                                   |                                                                                                                     | process batch.                                                                        |                                                                            |                     | fraction was not analysed, resulting in a non-conformance for frequency for this analysis. Not considered to impact        |                     | Semivolatile fraction was not analysed, resulting in a non-<br>conformance for frequency for this analysis. Not considered |
|                                                   |                                                                                                                     |                                                                                       |                                                                            |                     | upon assessment of accuracy, precision and comparability since the intra-laboratory and inter-laboratory field             |                     | to impact upon assessment of accuracy, precision and comparability since the intra-laboratory and inter-laboratory         |
|                                                   |                                                                                                                     |                                                                                       |                                                                            |                     | duplicates were analysed for PAH/ phenols and TRH semivolatile fraction and were DQI compliant.                            |                     | field duplicates were analysed for PAH/ phenol, dissolved metals and TRH semivolatile fraction and were DQI                |
|                                                   |                                                                                                                     |                                                                                       |                                                                            | V.                  |                                                                                                                            | N.                  | compliant.                                                                                                                 |
| Sample Preservation,<br>Handling and Holding      | Samples appropriately preserved upon collection, stored and transported, and analysed within holding times          | In accordance with laboratory specific method requirements.                           | Laboratory Reports                                                         | Yes                 |                                                                                                                            | Yes                 |                                                                                                                            |
| Times                                             |                                                                                                                     | Unless specific method indicates otherwise, soil and water samples should be stored,  |                                                                            |                     |                                                                                                                            |                     |                                                                                                                            |
|                                                   |                                                                                                                     | transported and received by the laboratory at < 6°C.                                  |                                                                            |                     |                                                                                                                            |                     |                                                                                                                            |
|                                                   |                                                                                                                     |                                                                                       |                                                                            |                     |                                                                                                                            |                     |                                                                                                                            |
| Data Management                                   | No errors in data transcription                                                                                     | Entry of field data verified by peer.                                                 | 10% check of electronically imported data (e.g. ESDAT).                    | Yes                 |                                                                                                                            | Yes                 |                                                                                                                            |
|                                                   |                                                                                                                     |                                                                                       | 100% check of manually entered data (e.g. field parameters, gauging data). |                     |                                                                                                                            |                     |                                                                                                                            |
|                                                   |                                                                                                                     |                                                                                       |                                                                            |                     |                                                                                                                            |                     |                                                                                                                            |
| Data Useability                                   | Limits of reporting less than investigation levels                                                                  | Limits of reporting less than relevant                                                | Results Tables                                                             | Yes                 |                                                                                                                            | Yes                 |                                                                                                                            |
|                                                   |                                                                                                                     | investigation levels.                                                                 |                                                                            |                     |                                                                                                                            |                     |                                                                                                                            |
| Quality Control Process                           | Objectives & Measure                                                                                                | Acceptance Criteria                                                                   |                                                                            |                     | Notes/Details of Nonconformance                                                                                            |                     | Notes/Details of Nonconformance                                                                                            |
|                                                   |                                                                                                                     |                                                                                       | lab reports, review data etc)                                              | Met?                |                                                                                                                            | Met?                |                                                                                                                            |
| Field (Intra-laboratory) Duplicate Sampling and   | Field Duplicate samples used assess the variability in analyte concentration between samples collected from the     |                                                                                       | ESDAT generated summary of relative percent difference (RPD)               | N/A                 | Relevant intra-lab QC samples for this monitoring were present in ES2304011.                                               | Yes                 |                                                                                                                            |
| Analysis                                          | sample location and the reproducibility of the laboratory analysis. Where required, resubmission of previously      | RPD <30% of mean conc. where both conc. >20 x LOR                                     | results for field duplicate samples.                                       |                     |                                                                                                                            |                     |                                                                                                                            |
|                                                   | analysed samples for chemicals within their holding times may be undertaken to further assess precision level of    | RPD <50% of mean conc. where both conc. 10-20 x LOR                                   |                                                                            |                     |                                                                                                                            |                     |                                                                                                                            |
|                                                   | precision.                                                                                                          | RPD No limit where both conc. < 10 x LOR                                              |                                                                            |                     |                                                                                                                            |                     |                                                                                                                            |
| Secondary Inter-laborator) Duplicate Sampling and | Results are accurate and free from laboratory error. Secondary duplicate samples sent to a secondary                | Analysed for same chemicals as primary sample.                                        | ESDAT generated summary of relative percent difference (RPD)               | N/A                 |                                                                                                                            | Yes                 |                                                                                                                            |
| Analysis                                          | laboratory to assess the accuracy of the analyte concentrations reported by the primary laboratory.                 | RPD <30% of mean conc. where both conc.                                               | results for field duplicate samples.                                       |                     |                                                                                                                            |                     |                                                                                                                            |
|                                                   | concentrations reported by the primary laboratory.                                                                  | >20 x LOR.  RPD <50% of mean conc. where both conc.                                   |                                                                            |                     |                                                                                                                            |                     |                                                                                                                            |
|                                                   |                                                                                                                     | 10-20 x LOR.  RPD no limit where both conc. < 10 x LOR.                               |                                                                            |                     |                                                                                                                            |                     |                                                                                                                            |
| Field Rinsate Blank<br>Preparation & Analysis     | Cross contamination of samples does not occur between sampling locations due to carry-over from sampling            | Analyte concentrations below LORs.                                                    | ESDAT generated summary of field blank analytical results.                 | N/A                 | Relevant intra-lab QC samples for this monitoring were present in ES2304011.                                               | Yes                 |                                                                                                                            |
| Preparation & Analysis                            | equipment.                                                                                                          |                                                                                       | blank analytical results.                                                  |                     | present in ES2304011.                                                                                                      |                     |                                                                                                                            |
| Trip Blank Sampling and                           | Cross contamination between samples does not occur in                                                               | Analyte concentrations below LORs.                                                    | , ,                                                                        | N/A                 | Relevant intra-lab QC samples for this monitoring were                                                                     | Yes                 |                                                                                                                            |
| Analysis                                          | transit or as an artefact of the sampling handling procedure.                                                       |                                                                                       | blank analytical results.                                                  |                     | present in ES2304011.                                                                                                      |                     |                                                                                                                            |
| Laboratory Duplicates                             | Laboratory duplicates are used to test the precision of the                                                         | As specified by laboratory.                                                           | Laboratory reports                                                         | Yes                 |                                                                                                                            | Yes                 |                                                                                                                            |
|                                                   | laboratory measurements.                                                                                            |                                                                                       |                                                                            |                     |                                                                                                                            |                     |                                                                                                                            |
| Laboratory Control Samples                        | s Laboratory control samples (LCS) are used to assess overall method performance. In general these samples are      | Dynamic recovery limits as specified by laboratory.                                   | Laboratory reports                                                         | Yes                 |                                                                                                                            | Yes                 |                                                                                                                            |
|                                                   | similar in composition to environmental samples, and contain known amounts of the analytes of interest.             |                                                                                       |                                                                            |                     |                                                                                                                            |                     |                                                                                                                            |
| Certified Reference<br>Material                   | CRM samples are used to monitor the accuracy of analyses performed by the laboratory.                               | As specified by laboratory (generally dynamic recovery limits). Usually not           | Laboratory reports                                                         | N/A                 |                                                                                                                            | N/A                 |                                                                                                                            |
|                                                   |                                                                                                                     | performed and assessed based on LCS results.                                          |                                                                            |                     |                                                                                                                            |                     |                                                                                                                            |
| Surrogate Recovery                                | Surrogates are organic compounds that are similar in chemical composition to analytes of interest and are           | Dynamic recovery limits as specified by laboratory.                                   | Laboratory reports                                                         | Yes                 |                                                                                                                            | Yes                 |                                                                                                                            |
|                                                   | spiked into environmental samples prior to sample                                                                   |                                                                                       |                                                                            |                     |                                                                                                                            |                     |                                                                                                                            |
|                                                   | preparation and analysis. Surrogate recoveries are used to evaluate matrix interference on a sample-specific basis. |                                                                                       |                                                                            |                     |                                                                                                                            |                     |                                                                                                                            |
|                                                   |                                                                                                                     |                                                                                       |                                                                            |                     |                                                                                                                            |                     |                                                                                                                            |
| Matrix Spike Recovery                             | A matrix spike is an aliquot of a sample spiked with a                                                              | Recovery 70 - 130% or dynamic limits if                                               | Laboratory reports                                                         | Yes                 |                                                                                                                            | No                  | Mattix spike recovery not determined for manganese and                                                                     |
|                                                   | known concentration of target analyte(s). Spiking occurs prior to sample preparation and analysis, and the results  | specified by laboratory.                                                              | ,                                                                          |                     |                                                                                                                            |                     | nitrite as N as the background level greater than or equal to 4x spike level.                                              |
|                                                   | are used to assess the bias of a method in a given sample matrix.                                                   | :                                                                                     |                                                                            |                     |                                                                                                                            |                     |                                                                                                                            |
| Laboratory Method Blanks                          | Method blanks are prepared to represent the sample                                                                  | Analyte concentrations below LORs.                                                    | Laboratory reports                                                         | Yes                 |                                                                                                                            | Yes                 |                                                                                                                            |
|                                                   | matrix as closely as possible and prepared/extracted/digested and analysed exactly like field                       |                                                                                       |                                                                            |                     |                                                                                                                            |                     |                                                                                                                            |
|                                                   | samples. These blanks are used by the laboratory to assess contamination introduced during sample                   |                                                                                       |                                                                            |                     |                                                                                                                            |                     |                                                                                                                            |
|                                                   | preparation activities.                                                                                             |                                                                                       |                                                                            |                     |                                                                                                                            |                     |                                                                                                                            |
| Potentially Assessed                              | No discrepancies between field lebent                                                                               | Analytical requite are intermedia                                                     | Multiple sources                                                           | Voc                 |                                                                                                                            | Voc                 |                                                                                                                            |
| Potentially Anomalous Data                        | No discrepancies between field, laboratory and/or expected results are identified                                   | Analytical results are internally consistent, consistent with field measurements, and | Multiple sources                                                           | Yes                 |                                                                                                                            | Yes                 |                                                                                                                            |
|                                                   |                                                                                                                     | consistent with expected and/or historical results based on CSM                       |                                                                            |                     |                                                                                                                            |                     |                                                                                                                            |
|                                                   |                                                                                                                     |                                                                                       |                                                                            |                     |                                                                                                                            |                     |                                                                                                                            |
| •                                                 | 1                                                                                                                   | i                                                                                     | 1                                                                          |                     | I .                                                                                                                        |                     |                                                                                                                            |



| Job Number:   | S20102                   |  |
|---------------|--------------------------|--|
| Report Title: | Surface Water Monitoring |  |
| Client:       | ReDirect Recycling       |  |
|               |                          |  |
|               |                          |  |
| Completed By: | Bec Chapple              |  |
| Date:         | 5-Sep-23                 |  |
| Verified By:  |                          |  |
|               |                          |  |

| SAMPLE        |           | SAMPLE        |           |  |
|---------------|-----------|---------------|-----------|--|
| DELIVERY      | ES2326328 | DELIVERY      | 316159    |  |
| GROUP (SDG):  |           | GROUP (SDG):  |           |  |
| Laboratory:   | ALS       | Laboratory:   | Envirolab |  |
| Sample Dates: | 14-Aug-23 | Sample Dates: | 8-Feb-23  |  |
| Sample Media: | Water     | Sample Media: | Water     |  |

| Quality Assurance                                                                                                                                                                                                                                                                                     | Objectives & Measure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Acceptance Criteria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Source of Information                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Acceptance Criteria Met?    |                                                                                                                                                                                                                                                                                                                                                                                       |                              | Notes/Details of Nonconformance                                                       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|---------------------------------------------------------------------------------------|
| Process Standard Procedures                                                                                                                                                                                                                                                                           | Standard field sampling procedures and forms used                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | No deviation from standard procedure and forms used.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Borelogs, field sheets, COCs, data tables                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Yes                         |                                                                                                                                                                                                                                                                                                                                                                                       | Met?<br>Yes                  |                                                                                       |
| Equipment Calibration                                                                                                                                                                                                                                                                                 | All equipment calibrated in accordance with manufacturers specifications                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | All equipment calibrated in accordance with manufacturers specifications.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Yes                         |                                                                                                                                                                                                                                                                                                                                                                                       | Yes                          |                                                                                       |
| Testing Method Accreditation                                                                                                                                                                                                                                                                          | NATA accredited methods used for all analyses determined                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Primary and secondary laboratories to use NATA accredited methods for all analytes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Laboratory Report                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Yes                         |                                                                                                                                                                                                                                                                                                                                                                                       | Yes                          |                                                                                       |
| Quality Control Sampling                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | determined.  Field (Intra-laboratory) Duplicates - ≥ 1 in 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ΩΔ/ΩC register (within field book)                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Yes                         |                                                                                                                                                                                                                                                                                                                                                                                       | N/A                          |                                                                                       |
| Frequency                                                                                                                                                                                                                                                                                             | 2005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | primary samples. (note that PFAS NEMP recommends 1 in 10 for PFAS investigations)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 165                         |                                                                                                                                                                                                                                                                                                                                                                                       | IN/A                         |                                                                                       |
|                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Secondary (inter-laboratory) duplicates - ≥ 1 in 20 primary samples.  (note that PFAS NEMP recommends 1 in 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N/A                         | Relevant inter-lab QC samples for this monitoring were present in 1020195.                                                                                                                                                                                                                                                                                                            | Yes                          |                                                                                       |
|                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | for PFAS investigations) Rinsate Blanks - ≥ 1 per day, per matrix per                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Yes                         | QC302                                                                                                                                                                                                                                                                                                                                                                                 | N/A                          | Primary laboratory received sample                                                    |
|                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | equipment.  Trip Blanks - ≥ 1 per esky containing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Yes                         |                                                                                                                                                                                                                                                                                                                                                                                       | N/A                          | Primary laboratory received sample                                                    |
|                                                                                                                                                                                                                                                                                                       | Laboratory QC analysis frequency in accordance with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | samples for volatiles.  Laboratory Duplicates - at least 1 in 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Laboratory Reports                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | No                          |                                                                                                                                                                                                                                                                                                                                                                                       | Yes                          | 1 Timely laboratory received sample                                                   |
|                                                                                                                                                                                                                                                                                                       | NEPC 2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | analyses or 1 per process batch.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Laboratory (Neports                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                             | Semivolatile fraction was not analysed, resulting in a non-<br>conformance for frequency for this analysis. Not<br>considered to impact upon assessment of accuracy,<br>precision and comparability since the intra-laboratory and<br>inter-laboratory field duplicates were analysed for PAH/<br>phenols and TRH semivolatile fraction and were DQI<br>compliant.                    |                              |                                                                                       |
|                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Method Blanks - at least 1 per process batch.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Laboratory Reports                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Yes                         |                                                                                                                                                                                                                                                                                                                                                                                       | Yes                          |                                                                                       |
|                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Surrogate Recoveries - all samples spiked where appropriate (e.g. chromatographic analysis of organics).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Laboratory Reports                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Yes                         |                                                                                                                                                                                                                                                                                                                                                                                       | Yes                          |                                                                                       |
|                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Laboratory Control Samples - at least 1 per process batch.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Yes                         |                                                                                                                                                                                                                                                                                                                                                                                       | Yes                          |                                                                                       |
|                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Matrix Spikes - at least 1 per matrix type per process batch.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Laboratory Reports                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | No                          | A matrix spike for PAH/Phenols and TRH-Semivolatile fraction was not analysed, resulting in a non-conformance for frequency for this analysis. Not considered to impact upon assessment of accuracy, precision and comparability since the intra-laboratory and interlaboratory field duplicates were analysed for PAH/ phenols and TRH semivolatile fraction and were DQI compliant. | Yes                          |                                                                                       |
| Sample Preservation,<br>Handling and Holding<br>Times                                                                                                                                                                                                                                                 | Samples appropriately preserved upon collection, stored and transported, and analysed within holding times                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | In accordance with laboratory specific method requirements. Unless specific method indicates otherwise, soil and water samples should be stored, transported and received by the laboratory at < 6°C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Yes                         | соприан.                                                                                                                                                                                                                                                                                                                                                                              | No                           | Holding times for inter-laboratory duplicate samples                                  |
| Data Management                                                                                                                                                                                                                                                                                       | No errors in data transcription                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Entry of field data verified by peer.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10% check of electronically imported data (e.g. ESDAT). 100% check of manually entered data (e.g. field parameters, gauging data).                                                                                                                                                                                                                                                                                                                                                           |                             |                                                                                                                                                                                                                                                                                                                                                                                       | Yes                          |                                                                                       |
| Data Useability                                                                                                                                                                                                                                                                                       | Limits of reporting less than investigation levels                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Limits of reporting less than relevant investigation levels.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Results Tables                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Yes                         |                                                                                                                                                                                                                                                                                                                                                                                       | Yes                          |                                                                                       |
| Quality Control Process                                                                                                                                                                                                                                                                               | Objectives & Measure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Acceptance Criteria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | How? (i.e. ESDAT output, review                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Accontance Criteria         | Notes/Details of Nanconformance                                                                                                                                                                                                                                                                                                                                                       | Accontance Criteria          | Notes/Details of Nonconformance                                                       |
|                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                             |                                                                                                                                                                                                                                                                                                                                                                                       |                              | INotes/Details of Noticonformance                                                     |
| Field (Intra-laboratory)                                                                                                                                                                                                                                                                              | Field Duplicate samples used assess the variability in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Analysed for same chemicals as primary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | lab reports, review data etc)  ESDAT generated summary of                                                                                                                                                                                                                                                                                                                                                                                                                                    | Met?                        | RPD exceeded for Zinc (49%) in primary sample MW3                                                                                                                                                                                                                                                                                                                                     | Met?                         | Notes/Details of Noticonformance                                                      |
| Field (Intra-laboratory) Duplicate Sampling and Analysis                                                                                                                                                                                                                                              | analyte concentration between samples collected from the sample location and the reproducibility of the laboratory analysis. Where required, resubmission of previously analysed samples for chemicals within their holding times may be undertaken to further assess precision level of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Analysed for same chemicals as primary sample.  RPD <30% of mean conc. where both conc. >20 x LOR  RPD <50% of mean conc. where both conc. 10-20 x LOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | lab reports, review data etc)                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Met?                        |                                                                                                                                                                                                                                                                                                                                                                                       | Met?                         | Notes/Details of Noticonformance                                                      |
| Duplicate Sampling and<br>Analysis                                                                                                                                                                                                                                                                    | analyte concentration between samples collected from the sample location and the reproducibility of the laboratory analysis. Where required, resubmission of previously analysed samples for chemicals within their holding times may be undertaken to further assess precision level of precision.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Analysed for same chemicals as primary sample.  RPD <30% of mean conc. where both conc. >20 x LOR  RPD <50% of mean conc. where both conc. 10-20 x LOR  RPD No limit where both conc. < 10 x LOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ESDAT generated summary of relative percent difference (RPD) results for field duplicate samples.                                                                                                                                                                                                                                                                                                                                                                                            | Met?                        | RPD exceeded for Zinc (49%) in primary sample MW3                                                                                                                                                                                                                                                                                                                                     | Met?                         |                                                                                       |
| Duplicate Sampling and Analysis  Secondary Inter-laborator) Duplicate Sampling and                                                                                                                                                                                                                    | analyte concentration between samples collected from the sample location and the reproducibility of the laboratory analysis. Where required, resubmission of previously analysed samples for chemicals within their holding times may be undertaken to further assess precision level of precision.  Results are accurate and free from laboratory error. Secondary duplicate samples sent to a secondary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Analysed for same chemicals as primary sample.  RPD <30% of mean conc. where both conc. >20 x LOR  RPD <50% of mean conc. where both conc. 10-20 x LOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ESDAT generated summary of relative percent difference (RPD) results for field duplicate samples.  ESDAT generated summary of relative percent difference (RPD)                                                                                                                                                                                                                                                                                                                              | Met?                        | RPD exceeded for Zinc (49%) in primary sample MW3                                                                                                                                                                                                                                                                                                                                     | Met?                         | RPD exceeded for Phosporous (148%) in primary sample MW3 and triplicate sample QC201. |
| Duplicate Sampling and Analysis  Secondary Inter-laborator)                                                                                                                                                                                                                                           | analyte concentration between samples collected from the sample location and the reproducibility of the laboratory analysis. Where required, resubmission of previously analysed samples for chemicals within their holding times may be undertaken to further assess precision level of precision.  Results are accurate and free from laboratory error.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Analysed for same chemicals as primary sample.  RPD <30% of mean conc. where both conc. >20 x LOR  RPD <50% of mean conc. where both conc. 10-20 x LOR  RPD No limit where both conc. < 10 x LOR  Analysed for same chemicals as primary sample.  RPD <30% of mean conc. where both conc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ESDAT generated summary of relative percent difference (RPD) results for field duplicate samples.                                                                                                                                                                                                                                                                                                                                                                                            | Met?                        | RPD exceeded for Zinc (49%) in primary sample MW3                                                                                                                                                                                                                                                                                                                                     | Met?                         | RPD exceeded for Phosporous (148%) in primary sample                                  |
| Duplicate Sampling and Analysis  Secondary Inter-laborator) Duplicate Sampling and                                                                                                                                                                                                                    | analyte concentration between samples collected from the sample location and the reproducibility of the laboratory analysis. Where required, resubmission of previously analysed samples for chemicals within their holding times may be undertaken to further assess precision level of precision.  Results are accurate and free from laboratory error. Secondary duplicate samples sent to a secondary laboratory to assess the accuracy of the analyte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Analysed for same chemicals as primary sample.  RPD <30% of mean conc. where both conc. >20 x LOR  RPD <50% of mean conc. where both conc. 10-20 x LOR  RPD No limit where both conc. < 10 x LOR  Analysed for same chemicals as primary sample.  RPD <30% of mean conc. where both conc. >20 x LOR.  RPD <50% of mean conc. where both conc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ESDAT generated summary of relative percent difference (RPD) results for field duplicate samples.  ESDAT generated summary of relative percent difference (RPD)                                                                                                                                                                                                                                                                                                                              | Met?                        | RPD exceeded for Zinc (49%) in primary sample MW3                                                                                                                                                                                                                                                                                                                                     | Met?                         | RPD exceeded for Phosporous (148%) in primary sample                                  |
| Duplicate Sampling and Analysis  Secondary Inter-laborator) Duplicate Sampling and Analysis                                                                                                                                                                                                           | analyte concentration between samples collected from the sample location and the reproducibility of the laboratory analysis. Where required, resubmission of previously analysed samples for chemicals within their holding times may be undertaken to further assess precision level of precision.  Results are accurate and free from laboratory error. Secondary duplicate samples sent to a secondary laboratory to assess the accuracy of the analyte concentrations reported by the primary laboratory.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Analysed for same chemicals as primary sample.  RPD <30% of mean conc. where both conc. >20 x LOR  RPD <50% of mean conc. where both conc. 10-20 x LOR  RPD No limit where both conc. < 10 x LOR  Analysed for same chemicals as primary sample.  RPD <30% of mean conc. where both conc. >20 x LOR.  RPD <50% of mean conc. where both conc. 10-20 x LOR.  RPD o limit where both conc. < 10 x LOR.                                                                                                                                                                                                                                                                                                                                                                                                             | ESDAT generated summary of relative percent difference (RPD) results for field duplicate samples.  ESDAT generated summary of relative percent difference (RPD) results for field duplicate samples.                                                                                                                                                                                                                                                                                         | No N/A                      | RPD exceeded for Zinc (49%) in primary sample MW3                                                                                                                                                                                                                                                                                                                                     | Met?                         | RPD exceeded for Phosporous (148%) in primary sample                                  |
| Duplicate Sampling and Analysis  Secondary Inter-laborator) Duplicate Sampling and                                                                                                                                                                                                                    | analyte concentration between samples collected from the sample location and the reproducibility of the laboratory analysis. Where required, resubmission of previously analysed samples for chemicals within their holding times may be undertaken to further assess precision level of precision.  Results are accurate and free from laboratory error. Secondary duplicate samples sent to a secondary laboratory to assess the accuracy of the analyte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Analysed for same chemicals as primary sample.  RPD <30% of mean conc. where both conc. >20 x LOR  RPD <50% of mean conc. where both conc. 10-20 x LOR  RPD No limit where both conc. < 10 x LOR  Analysed for same chemicals as primary sample.  RPD <30% of mean conc. where both conc. >20 x LOR.  RPD <50% of mean conc. where both conc. 10-20 x LOR.                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ESDAT generated summary of relative percent difference (RPD) results for field duplicate samples.  ESDAT generated summary of relative percent difference (RPD) results for field duplicate samples.                                                                                                                                                                                                                                                                                         | Met?                        | RPD exceeded for Zinc (49%) in primary sample MW3                                                                                                                                                                                                                                                                                                                                     | Met?                         | RPD exceeded for Phosporous (148%) in primary sample                                  |
| Secondary Inter-laborator) Duplicate Sampling and Analysis  Field Rinsate Blank Preparation & Analysis  Trip Blank Sampling and                                                                                                                                                                       | analyte concentration between samples collected from the sample location and the reproducibility of the laboratory analysis. Where required, resubmission of previously analysed samples for chemicals within their holding times may be undertaken to further assess precision level of precision.  Results are accurate and free from laboratory error. Secondary duplicate samples sent to a secondary laboratory to assess the accuracy of the analyte concentrations reported by the primary laboratory.  Cross contamination of samples does not occur between sampling locations due to carry-over from sampling equipment.  Cross contamination between samples does not occur in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Analysed for same chemicals as primary sample.  RPD <30% of mean conc. where both conc. >20 x LOR  RPD <50% of mean conc. where both conc. 10-20 x LOR  RPD No limit where both conc. < 10 x LOR  Analysed for same chemicals as primary sample.  RPD <30% of mean conc. where both conc. >20 x LOR.  RPD <50% of mean conc. where both conc. 10-20 x LOR.  RPD o limit where both conc. < 10 x LOR.                                                                                                                                                                                                                                                                                                                                                                                                             | ESDAT generated summary of relative percent difference (RPD) results for field duplicate samples.  ESDAT generated summary of relative percent difference (RPD) results for field duplicate samples.  ESDAT generated summary of field blank analytical results.                                                                                                                                                                                                                             | No N/A                      | RPD exceeded for Zinc (49%) in primary sample MW3 and duplicate sample QC102.  QC302 was reported above LOR for Manganese (0.038                                                                                                                                                                                                                                                      | Met?                         | RPD exceeded for Phosporous (148%) in primary sample                                  |
| Duplicate Sampling and Analysis  Secondary Inter-laborator) Duplicate Sampling and Analysis  Field Rinsate Blank Preparation & Analysis  Trip Blank Sampling and Analysis                                                                                                                             | analyte concentration between samples collected from the sample location and the reproducibility of the laboratory analysis. Where required, resubmission of previously analysed samples for chemicals within their holding times may be undertaken to further assess precision level of precision.  Results are accurate and free from laboratory error. Secondary duplicate samples sent to a secondary laboratory to assess the accuracy of the analyte concentrations reported by the primary laboratory.  Cross contamination of samples does not occur between sampling locations due to carry-over from sampling equipment.  Cross contamination between samples does not occur in transit or as an artefact of the sampling handling procedure.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Analysed for same chemicals as primary sample.  RPD <30% of mean conc. where both conc. >20 x LOR  RPD <50% of mean conc. where both conc. 10-20 x LOR  RPD No limit where both conc. < 10 x LOR  Analysed for same chemicals as primary sample.  RPD <30% of mean conc. where both conc. >20 x LOR.  RPD <50% of mean conc. where both conc. 10-20 x LOR.  RPD olimit where both conc. < 10 x LOR.  RPD no limit where both conc. < 10 x LOR.  Analyte concentrations below LORs.                                                                                                                                                                                                                                                                                                                               | ESDAT generated summary of relative percent difference (RPD) results for field duplicate samples.  ESDAT generated summary of relative percent difference (RPD) results for field duplicate samples.  ESDAT generated summary of field duplicate samples.  ESDAT generated summary of field blank analytical results.                                                                                                                                                                        | No No N/A Yes               | RPD exceeded for Zinc (49%) in primary sample MW3 and duplicate sample QC102.                                                                                                                                                                                                                                                                                                         | N/A  N/A  N/A                | RPD exceeded for Phosporous (148%) in primary sample                                  |
| Duplicate Sampling and Analysis  Secondary Inter-laborator) Duplicate Sampling and Analysis  Field Rinsate Blank Preparation & Analysis  Trip Blank Sampling and Analysis  Laboratory Duplicates                                                                                                      | analyte concentration between samples collected from the sample location and the reproducibility of the laboratory analysis. Where required, resubmission of previously analysed samples for chemicals within their holding times may be undertaken to further assess precision level of precision.  Results are accurate and free from laboratory error. Secondary duplicate samples sent to a secondary laboratory to assess the accuracy of the analyte concentrations reported by the primary laboratory.  Cross contamination of samples does not occur between sampling locations due to carry-over from sampling equipment.  Cross contamination between samples does not occur in transit or as an artefact of the sampling handling procedure.  Laboratory duplicates are used to test the precision of the laboratory measurements.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Analysed for same chemicals as primary sample.  RPD <30% of mean conc. where both conc. >20 x LOR  RPD <50% of mean conc. where both conc. 10-20 x LOR  RPD No limit where both conc. < 10 x LOR  Analysed for same chemicals as primary sample.  RPD <30% of mean conc. where both conc. >20 x LOR.  RPD <50% of mean conc. where both conc. 10-20 x LOR.  RPD olimit where both conc. < 10 x LOR.  RPD no limit where both conc. < 10 x LOR.  Analyte concentrations below LORs.  Analyte concentrations below LORs.                                                                                                                                                                                                                                                                                           | ESDAT generated summary of relative percent difference (RPD) results for field duplicate samples.  ESDAT generated summary of relative percent difference (RPD) results for field duplicate samples.  ESDAT generated summary of field duplicate samples.  ESDAT generated summary of field blank analytical results.  ESDAT generated summary of field blank analytical results.                                                                                                            | No No Yes                   | RPD exceeded for Zinc (49%) in primary sample MW3 and duplicate sample QC102.  QC302 was reported above LOR for Manganese (0.038 mg/L). This is not seen to impact on the data as this                                                                                                                                                                                                | N/A  N/A  N/A  Yes           | RPD exceeded for Phosporous (148%) in primary sample                                  |
| Duplicate Sampling and Analysis  Secondary Inter-laborator) Duplicate Sampling and Analysis  Field Rinsate Blank Preparation & Analysis  Trip Blank Sampling and Analysis  Laboratory Duplicates                                                                                                      | analyte concentration between samples collected from the sample location and the reproducibility of the laboratory analysis. Where required, resubmission of previously analysed samples for chemicals within their holding times may be undertaken to further assess precision level of precision.  Results are accurate and free from laboratory error. Secondary duplicate samples sent to a secondary laboratory to assess the accuracy of the analyte concentrations reported by the primary laboratory.  Cross contamination of samples does not occur between sampling locations due to carry-over from sampling equipment.  Cross contamination between samples does not occur in transit or as an artefact of the sampling handling procedure.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Analysed for same chemicals as primary sample.  RPD <30% of mean conc. where both conc. >20 x LOR  RPD <50% of mean conc. where both conc. 10-20 x LOR  RPD No limit where both conc. < 10 x LOR  Analysed for same chemicals as primary sample.  RPD <30% of mean conc. where both conc. >20 x LOR.  RPD <50% of mean conc. where both conc. 10-20 x LOR.  RPD of the mean conc. where both conc. 10-20 x LOR.  RPD no limit where both conc. < 10 x LOR.  Analyte concentrations below LORs.  Analyte concentrations below LORs.  Dynamic recovery limits as specified by                                                                                                                                                                                                                                      | ESDAT generated summary of relative percent difference (RPD) results for field duplicate samples.  ESDAT generated summary of relative percent difference (RPD) results for field duplicate samples.  ESDAT generated summary of field duplicate samples.  ESDAT generated summary of field blank analytical results.                                                                                                                                                                        | No No N/A Yes               | RPD exceeded for Zinc (49%) in primary sample MW3 and duplicate sample QC102.  QC302 was reported above LOR for Manganese (0.038 mg/L). This is not seen to impact on the data as this                                                                                                                                                                                                | N/A  N/A  N/A                | RPD exceeded for Phosporous (148%) in primary sample                                  |
| Duplicate Sampling and Analysis  Secondary Inter-laborator) Duplicate Sampling and Analysis  Field Rinsate Blank Preparation & Analysis  Trip Blank Sampling and Analysis  Laboratory Duplicates                                                                                                      | analyte concentration between samples collected from the sample location and the reproducibility of the laboratory analysis. Where required, resubmission of previously analysed samples for chemicals within their holding times may be undertaken to further assess precision level of precision.  Results are accurate and free from laboratory error. Secondary duplicate samples sent to a secondary laboratory to assess the accuracy of the analyte concentrations reported by the primary laboratory.  Cross contamination of samples does not occur between sampling locations due to carry-over from sampling equipment.  Cross contamination between samples does not occur in transit or as an artefact of the sampling handling procedure.  Laboratory duplicates are used to test the precision of the laboratory measurements.  Laboratory control samples (LCS) are used to assess overall method performance. In general these samples are similar in composition to environmental samples, and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Analysed for same chemicals as primary sample.  RPD <30% of mean conc. where both conc. >20 x LOR  RPD <50% of mean conc. where both conc. 10-20 x LOR  RPD No limit where both conc. < 10 x LOR  Analysed for same chemicals as primary sample.  RPD <30% of mean conc. where both conc. >20 x LOR.  RPD <50% of mean conc. where both conc. 10-20 x LOR.  RPD olimit where both conc. < 10 x LOR.  Analyte concentrations below LORs.  Analyte concentrations below LORs.  As specified by laboratory.  Dynamic recovery limits as specified by laboratory.  As specified by laboratory (generally dynamic recovery limits). Usually not performed and assessed based on LCS                                                                                                                                   | ESDAT generated summary of relative percent difference (RPD) results for field duplicate samples.  ESDAT generated summary of relative percent difference (RPD) results for field duplicate samples.  ESDAT generated summary of field duplicate samples.  ESDAT generated summary of field blank analytical results.  ESDAT generated summary of field blank analytical results.                                                                                                            | No No Yes                   | RPD exceeded for Zinc (49%) in primary sample MW3 and duplicate sample QC102.  QC302 was reported above LOR for Manganese (0.038 mg/L). This is not seen to impact on the data as this                                                                                                                                                                                                | N/A  N/A  N/A  Yes           | RPD exceeded for Phosporous (148%) in primary sample                                  |
| Duplicate Sampling and Analysis  Secondary Inter-laborator) Duplicate Sampling and Analysis  Field Rinsate Blank Preparation & Analysis  Trip Blank Sampling and Analysis  Laboratory Duplicates  Laboratory Control Samples  Certified Reference                                                     | analyte concentration between samples collected from the sample location and the reproducibility of the laboratory analysis. Where required, resubmission of previously analysed samples for chemicals within their holding times may be undertaken to further assess precision level of precision.  Results are accurate and free from laboratory error. Secondary duplicate samples sent to a secondary laboratory to assess the accuracy of the analyte concentrations reported by the primary laboratory.  Cross contamination of samples does not occur between sampling locations due to carry-over from sampling equipment.  Cross contamination between samples does not occur in transit or as an artefact of the sampling handling procedure.  Laboratory duplicates are used to test the precision of the laboratory measurements.  Laboratory control samples (LCS) are used to assess overall method performance. In general these samples are similar in composition to environmental samples, and contain known amounts of the analytes of interest.  CRM samples are used to monitor the accuracy of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Analysed for same chemicals as primary sample.  RPD <30% of mean conc. where both conc. >20 x LOR  RPD <50% of mean conc. where both conc. 10-20 x LOR  RPD No limit where both conc. < 10 x LOR  Analysed for same chemicals as primary sample.  RPD <30% of mean conc. where both conc. >20 x LOR.  RPD <50% of mean conc. where both conc. 10-20 x LOR.  RPD no limit where both conc. < 10 x LOR.  Analyte concentrations below LORs.  Analyte concentrations below LORs.  As specified by laboratory.  Dynamic recovery limits as specified by laboratory.  As specified by laboratory (generally dynamic recovery limits). Usually not performed and assessed based on LCS results.  Dynamic recovery limits as specified by laboratory.                                                                   | ESDAT generated summary of relative percent difference (RPD) results for field duplicate samples.  ESDAT generated summary of relative percent difference (RPD) results for field duplicate samples.  ESDAT generated summary of field blank analytical results.  ESDAT generated summary of field blank analytical results.  ESDAT generated summary of field blank analytical results.  Laboratory reports  Laboratory reports                                                             | No  No  N/A  Yes  Yes  Yes  | RPD exceeded for Zinc (49%) in primary sample MW3 and duplicate sample QC102.  QC302 was reported above LOR for Manganese (0.038 mg/L). This is not seen to impact on the data as this                                                                                                                                                                                                | N/A  No  No  N/A  Yes  Yes   | RPD exceeded for Phosporous (148%) in primary sample                                  |
| Duplicate Sampling and Analysis  Secondary Inter-laborator) Duplicate Sampling and Analysis  Field Rinsate Blank Preparation & Analysis  Trip Blank Sampling and Analysis  Laboratory Duplicates  Laboratory Control Sample:  Certified Reference Material  Surrogate Recovery  Matrix Spike Recovery | analyte concentration between samples collected from the sample location and the reproducibility of the laboratory analysis. Where required, resubmission of previously analysed samples for chemicals within their holding times may be undertaken to further assess precision level of precision.  Results are accurate and free from laboratory error. Secondary duplicate samples sent to a secondary laboratory to assess the accuracy of the analyte concentrations reported by the primary laboratory.  Cross contamination of samples does not occur between sampling locations due to carry-over from sampling equipment.  Cross contamination between samples does not occur in transit or as an artefact of the sampling handling procedure.  Laboratory duplicates are used to test the precision of the laboratory measurements.  Laboratory control samples (LCS) are used to assess overall method performance. In general these samples are similar in composition to environmental samples, and contain known amounts of the analytes of interest.  CRM samples are used to monitor the accuracy of analyses performed by the laboratory.  Surrogates are organic compounds that are similar in chemical composition to analytes of interest and are spiked into environmental samples prior to sample preparation and analysis. Surrogate recoveries are used to evaluate matrix interference on a sample-specific basis.  A matrix spike is an aliquot of a sample spiked with a known concentration of target analyte(s). Spiking occurs prior to sample preparation and analysis, and the results are used to assess the bias of a method in a given sample matrix. | Analysed for same chemicals as primary sample.  RPD <30% of mean conc. where both conc. >20 x LOR  RPD <50% of mean conc. where both conc. 10-20 x LOR  RPD No limit where both conc. < 10 x LOR  Analysed for same chemicals as primary sample.  RPD <30% of mean conc. where both conc. >20 x LOR.  RPD <50% of mean conc. where both conc. 10-20 x LOR.  RPD no limit where both conc. < 10 x LOR.  Analyte concentrations below LORs.  Analyte concentrations below LORs.  As specified by laboratory.  Dynamic recovery limits as specified by laboratory.  As specified by laboratory (generally dynamic recovery limits). Usually not performed and assessed based on LCS results.  Dynamic recovery limits as specified by laboratory.  Recovery 70 - 130% or dynamic limits if specified by laboratory. | ESDAT generated summary of relative percent difference (RPD) results for field duplicate samples.  ESDAT generated summary of relative percent difference (RPD) results for field duplicate samples.  ESDAT generated summary of field blank analytical results.  ESDAT generated summary of field blank analytical results.  Laboratory reports  Laboratory reports  Laboratory reports                                                                                                     | No  No  N/A  Yes  Yes  N/A  | RPD exceeded for Zinc (49%) in primary sample MW3 and duplicate sample QC102.  QC302 was reported above LOR for Manganese (0.038 mg/L). This is not seen to impact on the data as this                                                                                                                                                                                                | N/A  N/A  N/A  Yes  Yes      | RPD exceeded for Phosporous (148%) in primary sample                                  |
| Duplicate Sampling and Analysis  Secondary Inter-laborator) Duplicate Sampling and Analysis  Field Rinsate Blank Preparation & Analysis  Trip Blank Sampling and Analysis  Laboratory Duplicates  Laboratory Control Samples  Certified Reference Material  Surrogate Recovery                        | analyte concentration between samples collected from the sample location and the reproducibility of the laboratory analysis. Where required, resubmission of previously analysed samples for chemicals within their holding times may be undertaken to further assess precision level of precision.  Results are accurate and free from laboratory error. Secondary duplicate samples sent to a secondary laboratory to assess the accuracy of the analyte concentrations reported by the primary laboratory.  Cross contamination of samples does not occur between sampling locations due to carry-over from sampling equipment.  Cross contamination between samples does not occur in transit or as an artefact of the sampling handling procedure.  Laboratory duplicates are used to test the precision of the laboratory measurements.  Laboratory control samples (LCS) are used to assess overall method performance. In general these samples are similar in composition to environmental samples, and contain known amounts of the analytes of interest.  CRM samples are used to monitor the accuracy of analyses performed by the laboratory.  Surrogates are organic compounds that are similar in chemical composition to analytes of interest and are spiked into environmental samples prior to sample preparation and analysis. Surrogate recoveries are used to evaluate matrix interference on a sample-specific basis.                                                                                                                                                                                                                                              | Analysed for same chemicals as primary sample.  RPD <30% of mean conc. where both conc. >20 x LOR  RPD <50% of mean conc. where both conc. 10-20 x LOR  RPD No limit where both conc. < 10 x LOR  Analysed for same chemicals as primary sample.  RPD <30% of mean conc. where both conc. >20 x LOR.  RPD <50% of mean conc. where both conc. 10-20 x LOR.  RPD no limit where both conc. < 10 x LOR.  Analyte concentrations below LORs.  Analyte concentrations below LORs.  As specified by laboratory.  Dynamic recovery limits as specified by laboratory.  As specified by laboratory (generally dynamic recovery limits). Usually not performed and assessed based on LCS results.  Dynamic recovery limits as specified by laboratory.  Recovery 70 - 130% or dynamic limits if specified by laboratory. | ESDAT generated summary of relative percent difference (RPD) results for field duplicate samples.  ESDAT generated summary of relative percent difference (RPD) results for field duplicate samples.  ESDAT generated summary of field blank analytical results.  ESDAT generated summary of field blank analytical results.  ESDAT generated summary of field blank analytical results.  Laboratory reports  Laboratory reports  Laboratory reports  Laboratory reports  Laboratory reports | No No No Yes No Yes Yes Yes | RPD exceeded for Zinc (49%) in primary sample MW3 and duplicate sample QC102.  QC302 was reported above LOR for Manganese (0.038 mg/L). This is not seen to impact on the data as this                                                                                                                                                                                                | N/A  N/A  N/A  Yes  Yes  Yes | RPD exceeded for Phosporous (148%) in primary sample                                  |



| Job Number:   | S20102                   |
|---------------|--------------------------|
| Report Title: | Surface Water Monitoring |
| Client:       | ReDirect Recycling       |
|               |                          |
|               |                          |
| Completed By: | Bec Chapple              |
| Date:         | 5-Sep-23                 |
| Verified By:  |                          |
| Date:         |                          |

| SAMPLE        |           |
|---------------|-----------|
| DELIVERY      | 1020195   |
| GROUP (SDG):  |           |
| Laboratory:   | Eurofins  |
| Sample Dates: | 14-Aug-23 |
| Sample Media: | Water     |

| Process                                                                                                                                                                                                                                                                                                                                                  | Objectives & Measure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Acceptance Criteria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Source of Information                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Met?                              | Notes/Details of Nonconformance                         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|---------------------------------------------------------|
| Standard Procedures                                                                                                                                                                                                                                                                                                                                      | Standard field sampling procedures and forms used                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | No deviation from standard procedure and forms used.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Borelogs, field sheets, COCs, data tables                                                                                                                                                                                                                                                                                                                                                                                                                                | Yes                               |                                                         |
| Equipment Calibration                                                                                                                                                                                                                                                                                                                                    | All equipment calibrated in accordance with manufacturers specifications                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | manufacturers specifications.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Calibration Certificates / Records                                                                                                                                                                                                                                                                                                                                                                                                                                       | Yes                               |                                                         |
| _                                                                                                                                                                                                                                                                                                                                                        | NATA accredited methods used for all analyses determined                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Primary and secondary laboratories to use NATA accredited methods for all analytes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Laboratory Report                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Yes                               |                                                         |
|                                                                                                                                                                                                                                                                                                                                                          | Field QC sampling frequency in accordance with AS4482.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | QA/QC register (within field book)                                                                                                                                                                                                                                                                                                                                                                                                                                       | N/A                               |                                                         |
| Frequency                                                                                                                                                                                                                                                                                                                                                | 2005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | primary samples.<br>(note that PFAS NEMP recommends 1 in 10 for PFAS investigations)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                   |                                                         |
|                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | W <sub>2</sub> -                  |                                                         |
|                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Secondary (inter-laboratory) duplicates - ≥ 1 in 20 primary samples.  (note that PFAS NEMP recommends 1 in 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | QA/QC register (within field book)                                                                                                                                                                                                                                                                                                                                                                                                                                       | Yes                               |                                                         |
|                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | for PFAS investigations)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | INI/A                             | Drive and Johanna to manager and a smaller              |
|                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Rinsate Blanks - ≥ 1 per day, per matrix per equipment.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | QA/QC register (within field book)                                                                                                                                                                                                                                                                                                                                                                                                                                       | N/A                               | Primary laboratory received sample                      |
|                                                                                                                                                                                                                                                                                                                                                          | Laboratory OC analysis fraguency in accordance with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Trip Blanks - ≥ 1 per esky containing samples for volatiles.  Laboratory Duplicates - at least 1 in 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | QA/QC register (within field book)                                                                                                                                                                                                                                                                                                                                                                                                                                       | N/A                               | Primary laboratory received sample                      |
|                                                                                                                                                                                                                                                                                                                                                          | Laboratory QC analysis frequency in accordance with NEPC 2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | analyses or 1 per process batch.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Laboratory Reports                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Yes                               |                                                         |
|                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                   |                                                         |
|                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                   |                                                         |
|                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Method Blanks - at least 1 per process                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Laboratory Reports                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Yes                               |                                                         |
|                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | batch.  Surrogate Recoveries - all samples spiked                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Laboratory Reports                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Yes                               |                                                         |
|                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | where appropriate (e.g. chromatographic analysis of organics).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Laboratory response                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                   |                                                         |
|                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Laboratory Control Samples - at least 1 per process batch.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Laboratory Reports                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Yes                               |                                                         |
|                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Matrix Spikes - at least 1 per matrix type per process batch.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Laboratory Reports                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Yes                               |                                                         |
|                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | process baterii                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                   |                                                         |
|                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                   |                                                         |
|                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                   |                                                         |
| Sample Preservation,<br>Handling and Holding                                                                                                                                                                                                                                                                                                             | Samples appropriately preserved upon collection, stored and transported, and analysed within holding times                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | In accordance with laboratory specific method requirements.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Laboratory Reports                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Yes                               |                                                         |
| Times                                                                                                                                                                                                                                                                                                                                                    | and transported, and analysed within holding times                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Unless specific method indicates otherwise, soil and water samples should be stored,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                   |                                                         |
|                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | transported and received by the laboratory at < 6°C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                   |                                                         |
|                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                   |                                                         |
| Data Management                                                                                                                                                                                                                                                                                                                                          | No errors in data transcription                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Entry of field data verified by peer.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10% check of electronically imported data (e.g. ESDAT).                                                                                                                                                                                                                                                                                                                                                                                                                  | Yes                               |                                                         |
|                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 100% check of manually entered data (e.g. field parameters, gauging data).                                                                                                                                                                                                                                                                                                                                                                                               |                                   |                                                         |
|                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                   |                                                         |
| Data Useability                                                                                                                                                                                                                                                                                                                                          | Limits of reporting less than investigation levels                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Limits of reporting less than relevant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Results Tables                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Yes                               |                                                         |
|                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | investigation levels.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                   |                                                         |
| Quality Control Process                                                                                                                                                                                                                                                                                                                                  | Objectives & Measure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | At-u Ouit-ui-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | LLO. /: FODATtt                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                   | Notes /Datalla of Nones of Superior                     |
|                                                                                                                                                                                                                                                                                                                                                          | Objectives a measure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Acceptance Criteria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | How? (i.e. ESDAT output, review lab reports, review data etc.)                                                                                                                                                                                                                                                                                                                                                                                                           | · ·                               | Notes/Details of Nonconformance                         |
|                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | lab reports, review data etc)                                                                                                                                                                                                                                                                                                                                                                                                                                            | Met?                              | Notes/Details of Nonconformance                         |
| Field (Intra-laboratory)                                                                                                                                                                                                                                                                                                                                 | Field Duplicate samples used assess the variability in analyte concentration between samples collected from the sample location and the reproducibility of the laboratory                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Analysed for same chemicals as primary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Met?                              | Notes/Details of Nonconformance                         |
| Field (Intra-laboratory) Duplicate Sampling and                                                                                                                                                                                                                                                                                                          | Field Duplicate samples used assess the variability in analyte concentration between samples collected from the sample location and the reproducibility of the laboratory analysis. Where required, resubmission of previously analysed samples for chemicals within their holding times                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Analysed for same chemicals as primary sample.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | lab reports, review data etc)  ESDAT generated summary of relative percent difference (RPD)                                                                                                                                                                                                                                                                                                                                                                              | Met?                              | Notes/Details of Nonconformance                         |
| Field (Intra-laboratory)<br>Duplicate Sampling and<br>Analysis                                                                                                                                                                                                                                                                                           | Field Duplicate samples used assess the variability in analyte concentration between samples collected from the sample location and the reproducibility of the laboratory analysis. Where required, resubmission of previously                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Analysed for same chemicals as primary sample.  RPD <30% of mean conc. where both conc. >20 x LOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | lab reports, review data etc)  ESDAT generated summary of relative percent difference (RPD)                                                                                                                                                                                                                                                                                                                                                                              | Met?                              | Notes/Details of Nonconformance                         |
| Field (Intra-laboratory) Duplicate Sampling and Analysis                                                                                                                                                                                                                                                                                                 | Field Duplicate samples used assess the variability in analyte concentration between samples collected from the sample location and the reproducibility of the laboratory analysis. Where required, resubmission of previously analysed samples for chemicals within their holding times may be undertaken to further assess precision level of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Analysed for same chemicals as primary sample.  RPD <30% of mean conc. where both conc. >20 x LOR  RPD <50% of mean conc. where both conc. 10-20 x LOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | lab reports, review data etc)  ESDAT generated summary of relative percent difference (RPD) results for field duplicate samples.                                                                                                                                                                                                                                                                                                                                         | Met?                              | RPD exceedance for iron (84%) and zinc (35%) in primary |
| Field (Intra-laboratory) Duplicate Sampling and Analysis  Secondary Inter-laborator) Duplicate Sampling and Analysis                                                                                                                                                                                                                                     | Field Duplicate samples used assess the variability in analyte concentration between samples collected from the sample location and the reproducibility of the laboratory analysis. Where required, resubmission of previously analysed samples for chemicals within their holding times may be undertaken to further assess precision level of precision.  Results are accurate and free from laboratory error. Secondary duplicate samples sent to a secondary laboratory to assess the accuracy of the analyte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Analysed for same chemicals as primary sample.  RPD <30% of mean conc. where both conc. >20 x LOR  RPD <50% of mean conc. where both conc. 10-20 x LOR  RPD No limit where both conc. < 10 x LOR  Analysed for same chemicals as primary sample.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | lab reports, review data etc)  ESDAT generated summary of relative percent difference (RPD) results for field duplicate samples.                                                                                                                                                                                                                                                                                                                                         | Met?                              |                                                         |
| Field (Intra-laboratory) Duplicate Sampling and Analysis  Secondary Inter-laborator) Duplicate Sampling and Analysis                                                                                                                                                                                                                                     | Field Duplicate samples used assess the variability in analyte concentration between samples collected from the sample location and the reproducibility of the laboratory analysis. Where required, resubmission of previously analysed samples for chemicals within their holding times may be undertaken to further assess precision level of precision.  Results are accurate and free from laboratory error. Secondary duplicate samples sent to a secondary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Analysed for same chemicals as primary sample.  RPD <30% of mean conc. where both conc. >20 x LOR  RPD <50% of mean conc. where both conc. 10-20 x LOR  RPD No limit where both conc. < 10 x LOR  Analysed for same chemicals as primary sample.  RPD <30% of mean conc. where both conc. >20 x LOR.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ESDAT generated summary of relative percent difference (RPD) results for field duplicate samples.  ESDAT generated summary of relative percent difference (RPD)                                                                                                                                                                                                                                                                                                          | Met?                              | RPD exceedance for iron (84%) and zinc (35%) in primary |
| Field (Intra-laboratory) Duplicate Sampling and Analysis  Secondary Inter-laborator) Duplicate Sampling and Analysis                                                                                                                                                                                                                                     | Field Duplicate samples used assess the variability in analyte concentration between samples collected from the sample location and the reproducibility of the laboratory analysis. Where required, resubmission of previously analysed samples for chemicals within their holding times may be undertaken to further assess precision level of precision.  Results are accurate and free from laboratory error. Secondary duplicate samples sent to a secondary laboratory to assess the accuracy of the analyte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Analysed for same chemicals as primary sample.  RPD <30% of mean conc. where both conc. >20 x LOR  RPD <50% of mean conc. where both conc. 10-20 x LOR  RPD No limit where both conc. < 10 x LOR  Analysed for same chemicals as primary sample.  RPD <30% of mean conc. where both conc. >20 x LOR.  RPD <50% of mean conc. where both conc. 10-20 x LOR.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ESDAT generated summary of relative percent difference (RPD) results for field duplicate samples.  ESDAT generated summary of relative percent difference (RPD)                                                                                                                                                                                                                                                                                                          | Met?                              | RPD exceedance for iron (84%) and zinc (35%) in primary |
| Field (Intra-laboratory) Duplicate Sampling and Analysis  Secondary Inter-laborator) Duplicate Sampling and Analysis  Field Rinsate Blank                                                                                                                                                                                                                | Field Duplicate samples used assess the variability in analyte concentration between samples collected from the sample location and the reproducibility of the laboratory analysis. Where required, resubmission of previously analysed samples for chemicals within their holding times may be undertaken to further assess precision level of precision.  Results are accurate and free from laboratory error. Secondary duplicate samples sent to a secondary laboratory to assess the accuracy of the analyte concentrations reported by the primary laboratory.  Cross contamination of samples does not occur between                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Analysed for same chemicals as primary sample.  RPD <30% of mean conc. where both conc. >20 x LOR  RPD <50% of mean conc. where both conc. 10-20 x LOR  RPD No limit where both conc. < 10 x LOR  Analysed for same chemicals as primary sample.  RPD <30% of mean conc. where both conc. >20 x LOR.  RPD <50% of mean conc. where both conc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ESDAT generated summary of relative percent difference (RPD) results for field duplicate samples.  ESDAT generated summary of relative percent difference (RPD) results for field duplicate samples.                                                                                                                                                                                                                                                                     | Met?                              | RPD exceedance for iron (84%) and zinc (35%) in primary |
| Field (Intra-laboratory) Duplicate Sampling and Analysis  Secondary Inter-laborator) Duplicate Sampling and Analysis  Field Rinsate Blank Preparation & Analysis                                                                                                                                                                                         | Field Duplicate samples used assess the variability in analyte concentration between samples collected from the sample location and the reproducibility of the laboratory analysis. Where required, resubmission of previously analysed samples for chemicals within their holding times may be undertaken to further assess precision level of precision.  Results are accurate and free from laboratory error. Secondary duplicate samples sent to a secondary laboratory to assess the accuracy of the analyte concentrations reported by the primary laboratory.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Analysed for same chemicals as primary sample.  RPD <30% of mean conc. where both conc. >20 x LOR  RPD <50% of mean conc. where both conc. 10-20 x LOR  RPD No limit where both conc. < 10 x LOR  Analysed for same chemicals as primary sample.  RPD <30% of mean conc. where both conc. >20 x LOR.  RPD <50% of mean conc. where both conc. 10-20 x LOR.  RPD olimit where both conc. < 10 x LOR.                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ESDAT generated summary of relative percent difference (RPD) results for field duplicate samples.  ESDAT generated summary of relative percent difference (RPD) results for field duplicate samples.                                                                                                                                                                                                                                                                     | Met?                              | RPD exceedance for iron (84%) and zinc (35%) in primary |
| Field (Intra-laboratory) Duplicate Sampling and Analysis  Secondary Inter-laborator) Duplicate Sampling and Analysis  Field Rinsate Blank Preparation & Analysis  Trip Blank Sampling and                                                                                                                                                                | Field Duplicate samples used assess the variability in analyte concentration between samples collected from the sample location and the reproducibility of the laboratory analysis. Where required, resubmission of previously analysed samples for chemicals within their holding times may be undertaken to further assess precision level of precision.  Results are accurate and free from laboratory error. Secondary duplicate samples sent to a secondary laboratory to assess the accuracy of the analyte concentrations reported by the primary laboratory.  Cross contamination of samples does not occur between sampling locations due to carry-over from sampling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Analysed for same chemicals as primary sample.  RPD <30% of mean conc. where both conc. >20 x LOR  RPD <50% of mean conc. where both conc. 10-20 x LOR  RPD No limit where both conc. < 10 x LOR  Analysed for same chemicals as primary sample.  RPD <30% of mean conc. where both conc. >20 x LOR.  RPD <50% of mean conc. where both conc. 10-20 x LOR.  RPD olimit where both conc. < 10 x LOR.                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ESDAT generated summary of relative percent difference (RPD) results for field duplicate samples.  ESDAT generated summary of relative percent difference (RPD) results for field duplicate samples.  ESDAT generated summary of relative percent difference (RPD) results for field duplicate samples.                                                                                                                                                                  | Met?                              | RPD exceedance for iron (84%) and zinc (35%) in primary |
| Field (Intra-laboratory) Duplicate Sampling and Analysis  Secondary Inter-laborator) Duplicate Sampling and Analysis  Field Rinsate Blank Preparation & Analysis  Trip Blank Sampling and                                                                                                                                                                | Field Duplicate samples used assess the variability in analyte concentration between samples collected from the sample location and the reproducibility of the laboratory analysis. Where required, resubmission of previously analysed samples for chemicals within their holding times may be undertaken to further assess precision level of precision.  Results are accurate and free from laboratory error. Secondary duplicate samples sent to a secondary laboratory to assess the accuracy of the analyte concentrations reported by the primary laboratory.  Cross contamination of samples does not occur between sampling locations due to carry-over from sampling equipment.  Cross contamination between samples does not occur in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Analysed for same chemicals as primary sample.  RPD <30% of mean conc. where both conc. >20 x LOR  RPD <50% of mean conc. where both conc. 10-20 x LOR  RPD No limit where both conc. < 10 x LOR  Analysed for same chemicals as primary sample.  RPD <30% of mean conc. where both conc. >20 x LOR.  RPD <50% of mean conc. where both conc. 10-20 x LOR.  RPD no limit where both conc. < 10 x LOR.  Analyte concentrations below LORs.                                                                                                                                                                                                                                                                                                                                                                                                            | ESDAT generated summary of relative percent difference (RPD) results for field duplicate samples.  ESDAT generated summary of relative percent difference (RPD) results for field duplicate samples.  ESDAT generated summary of field blank analytical results.                                                                                                                                                                                                         | N/A  N/A                          | RPD exceedance for iron (84%) and zinc (35%) in primary |
| Field (Intra-laboratory) Duplicate Sampling and Analysis  Secondary Inter-laborator) Duplicate Sampling and Analysis  Field Rinsate Blank Preparation & Analysis  Trip Blank Sampling and Analysis  Laboratory Duplicates                                                                                                                                | Field Duplicate samples used assess the variability in analyte concentration between samples collected from the sample location and the reproducibility of the laboratory analysis. Where required, resubmission of previously analysed samples for chemicals within their holding times may be undertaken to further assess precision level of precision.  Results are accurate and free from laboratory error. Secondary duplicate samples sent to a secondary laboratory to assess the accuracy of the analyte concentrations reported by the primary laboratory.  Cross contamination of samples does not occur between sampling locations due to carry-over from sampling equipment.  Cross contamination between samples does not occur in transit or as an artefact of the sampling handling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Analysed for same chemicals as primary sample.  RPD <30% of mean conc. where both conc. >20 x LOR  RPD <50% of mean conc. where both conc. 10-20 x LOR  RPD No limit where both conc. < 10 x LOR  Analysed for same chemicals as primary sample.  RPD <30% of mean conc. where both conc. >20 x LOR.  RPD <50% of mean conc. where both conc. 10-20 x LOR.  RPD no limit where both conc. < 10 x LOR.  Analyte concentrations below LORs.  Analyte concentrations below LORs.                                                                                                                                                                                                                                                                                                                                                                        | ESDAT generated summary of relative percent difference (RPD) results for field duplicate samples.  ESDAT generated summary of relative percent difference (RPD) results for field duplicate samples.  ESDAT generated summary of field blank analytical results.                                                                                                                                                                                                         | N/A  N/A                          | RPD exceedance for iron (84%) and zinc (35%) in primary |
| Field (Intra-laboratory) Duplicate Sampling and Analysis  Secondary Inter-laborator) Duplicate Sampling and Analysis  Field Rinsate Blank Preparation & Analysis  Trip Blank Sampling and Analysis  Laboratory Duplicates  Laboratory Control Samples                                                                                                    | Field Duplicate samples used assess the variability in analyte concentration between samples collected from the sample location and the reproducibility of the laboratory analysis. Where required, resubmission of previously analysed samples for chemicals within their holding times may be undertaken to further assess precision level of precision.  Results are accurate and free from laboratory error. Secondary duplicate samples sent to a secondary laboratory to assess the accuracy of the analyte concentrations reported by the primary laboratory.  Cross contamination of samples does not occur between sampling locations due to carry-over from sampling equipment.  Cross contamination between samples does not occur in transit or as an artefact of the sampling handling procedure.  Laboratory duplicates are used to test the precision of the laboratory measurements.  Laboratory control samples (LCS) are used to assess                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Analysed for same chemicals as primary sample.  RPD <30% of mean conc. where both conc. >20 x LOR  RPD <50% of mean conc. where both conc. 10-20 x LOR  RPD No limit where both conc. < 10 x LOR  Analysed for same chemicals as primary sample.  RPD <30% of mean conc. where both conc. >20 x LOR.  RPD <50% of mean conc. where both conc. 10-20 x LOR.  RPD olimit where both conc. < 10 x LOR.  RPD no limit where both conc. < 10 x LOR.  Analyte concentrations below LORs.  Analyte concentrations below LORs.  Dynamic recovery limits as specified by                                                                                                                                                                                                                                                                                      | ESDAT generated summary of relative percent difference (RPD) results for field duplicate samples.  ESDAT generated summary of relative percent difference (RPD) results for field duplicate samples.  ESDAT generated summary of field duplicate samples.  ESDAT generated summary of field blank analytical results.                                                                                                                                                    | N/A  N/A  N/A                     | RPD exceedance for iron (84%) and zinc (35%) in primary |
| Field (Intra-laboratory) Duplicate Sampling and Analysis  Secondary Inter-laborator) Duplicate Sampling and Analysis  Field Rinsate Blank Preparation & Analysis  Trip Blank Sampling and Analysis  Laboratory Duplicates  Laboratory Control Samples                                                                                                    | Field Duplicate samples used assess the variability in analyte concentration between samples collected from the sample location and the reproducibility of the laboratory analysis. Where required, resubmission of previously analysed samples for chemicals within their holding times may be undertaken to further assess precision level of precision.  Results are accurate and free from laboratory error. Secondary duplicate samples sent to a secondary laboratory to assess the accuracy of the analyte concentrations reported by the primary laboratory.  Cross contamination of samples does not occur between sampling locations due to carry-over from sampling equipment.  Cross contamination between samples does not occur in transit or as an artefact of the sampling handling procedure.  Laboratory duplicates are used to test the precision of the laboratory measurements.  Laboratory control samples (LCS) are used to assess overall method performance. In general these samples are similar in composition to environmental samples, and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Analysed for same chemicals as primary sample.  RPD <30% of mean conc. where both conc. >20 x LOR  RPD <50% of mean conc. where both conc. 10-20 x LOR  RPD No limit where both conc. < 10 x LOR  Analysed for same chemicals as primary sample.  RPD <30% of mean conc. where both conc. >20 x LOR.  RPD <50% of mean conc. where both conc. 10-20 x LOR.  RPD olimit where both conc. < 10 x LOR.  RPD no limit where both conc. < 10 x LOR.  Analyte concentrations below LORs.  Analyte concentrations below LORs.  Dynamic recovery limits as specified by                                                                                                                                                                                                                                                                                      | ESDAT generated summary of relative percent difference (RPD) results for field duplicate samples.  ESDAT generated summary of relative percent difference (RPD) results for field duplicate samples.  ESDAT generated summary of field duplicate samples.  ESDAT generated summary of field blank analytical results.  ESDAT generated summary of field blank analytical results.                                                                                        | N/A  N/A  N/A  Yes                | RPD exceedance for iron (84%) and zinc (35%) in primary |
| Field (Intra-laboratory) Duplicate Sampling and Analysis  Secondary Inter-laborator) Duplicate Sampling and Analysis  Field Rinsate Blank Preparation & Analysis  Trip Blank Sampling and Analysis  Laboratory Duplicates  Laboratory Control Samples  Certified Reference                                                                               | Field Duplicate samples used assess the variability in analyte concentration between samples collected from the sample location and the reproducibility of the laboratory analysis. Where required, resubmission of previously analysed samples for chemicals within their holding times may be undertaken to further assess precision level of precision.  Results are accurate and free from laboratory error. Secondary duplicate samples sent to a secondary laboratory to assess the accuracy of the analyte concentrations reported by the primary laboratory.  Cross contamination of samples does not occur between sampling locations due to carry-over from sampling equipment.  Cross contamination between samples does not occur in transit or as an artefact of the sampling handling procedure.  Laboratory duplicates are used to test the precision of the laboratory measurements.  Laboratory control samples (LCS) are used to assess overall method performance. In general these samples are similar in composition to environmental samples, and contain known amounts of the analytes of interest.  CRM samples are used to monitor the accuracy of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Analysed for same chemicals as primary sample.  RPD <30% of mean conc. where both conc. >20 x LOR  RPD <50% of mean conc. where both conc. 10-20 x LOR  RPD No limit where both conc. < 10 x LOR  Analysed for same chemicals as primary sample.  RPD <30% of mean conc. where both conc. >20 x LOR.  RPD <50% of mean conc. where both conc. 10-20 x LOR.  RPD no limit where both conc. < 10 x LOR.  Analyte concentrations below LORs.  Analyte concentrations below LORs.  As specified by laboratory.  Dynamic recovery limits as specified by laboratory.  As specified by laboratory (generally                                                                                                                                                                                                                                               | ESDAT generated summary of relative percent difference (RPD) results for field duplicate samples.  ESDAT generated summary of relative percent difference (RPD) results for field duplicate samples.  ESDAT generated summary of field duplicate samples.  ESDAT generated summary of field blank analytical results.  ESDAT generated summary of field blank analytical results.                                                                                        | N/A  N/A  N/A  Yes                | RPD exceedance for iron (84%) and zinc (35%) in primary |
| Field (Intra-laboratory) Duplicate Sampling and Analysis  Secondary Inter-laborator) Duplicate Sampling and Analysis  Field Rinsate Blank Preparation & Analysis  Trip Blank Sampling and Analysis  Laboratory Duplicates  Laboratory Control Samples                                                                                                    | Field Duplicate samples used assess the variability in analyte concentration between samples collected from the sample location and the reproducibility of the laboratory analysis. Where required, resubmission of previously analysed samples for chemicals within their holding times may be undertaken to further assess precision level of precision.  Results are accurate and free from laboratory error. Secondary duplicate samples sent to a secondary laboratory to assess the accuracy of the analyte concentrations reported by the primary laboratory.  Cross contamination of samples does not occur between sampling locations due to carry-over from sampling equipment.  Cross contamination between samples does not occur in transit or as an artefact of the sampling handling procedure.  Laboratory duplicates are used to test the precision of the laboratory measurements.  Laboratory control samples (LCS) are used to assess overall method performance. In general these samples are similar in composition to environmental samples, and contain known amounts of the analytes of interest.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Analysed for same chemicals as primary sample.  RPD <30% of mean conc. where both conc. >20 x LOR  RPD <50% of mean conc. where both conc. 10-20 x LOR  RPD No limit where both conc. < 10 x LOR  Analysed for same chemicals as primary sample.  RPD <30% of mean conc. where both conc. >20 x LOR.  RPD <50% of mean conc. where both conc. 10-20 x LOR.  RPD no limit where both conc. < 10 x LOR.  Analyte concentrations below LORs.  Analyte concentrations below LORs.  As specified by laboratory.  Dynamic recovery limits as specified by laboratory.  As specified by laboratory (generally dynamic recovery limits). Usually not performed and assessed based on LCS                                                                                                                                                                     | ESDAT generated summary of relative percent difference (RPD) results for field duplicate samples.  ESDAT generated summary of relative percent difference (RPD) results for field duplicate samples.  ESDAT generated summary of field blank analytical results.  ESDAT generated summary of field blank analytical results.  ESDAT generated summary of field blank analytical results.  Laboratory reports  Laboratory reports                                         | N/A  N/A  N/A  N/A  Yes  Yes      | RPD exceedance for iron (84%) and zinc (35%) in primary |
| Field (Intra-laboratory) Duplicate Sampling and Analysis  Secondary Inter-laborator) Duplicate Sampling and Analysis  Field Rinsate Blank Preparation & Analysis  Trip Blank Sampling and Analysis  Laboratory Duplicates  Laboratory Control Samples  Certified Reference Material  Surrogate Recovery                                                  | Field Duplicate samples used assess the variability in analyte concentration between samples collected from the sample location and the reproducibility of the laboratory analysis. Where required, resubmission of previously analysed samples for chemicals within their holding times may be undertaken to further assess precision level of precision.  Results are accurate and free from laboratory error. Secondary duplicate samples sent to a secondary laboratory to assess the accuracy of the analyte concentrations reported by the primary laboratory.  Cross contamination of samples does not occur between sampling locations due to carry-over from sampling equipment.  Cross contamination between samples does not occur in transit or as an artefact of the sampling handling procedure.  Laboratory duplicates are used to test the precision of the laboratory measurements.  Laboratory control samples (LCS) are used to assess overall method performance. In general these samples are similar in composition to environmental samples, and contain known amounts of the analytes of interest.  CRM samples are used to monitor the accuracy of analyses performed by the laboratory.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Analysed for same chemicals as primary sample.  RPD <30% of mean conc. where both conc. >20 x LOR  RPD <50% of mean conc. where both conc. 10-20 x LOR  RPD No limit where both conc. < 10 x LOR  Analysed for same chemicals as primary sample.  RPD <30% of mean conc. where both conc. >20 x LOR.  RPD <50% of mean conc. where both conc. 10-20 x LOR.  RPD no limit where both conc. < 10 x LOR.  Analyte concentrations below LORs.  Analyte concentrations below LORs.  As specified by laboratory.  Dynamic recovery limits as specified by laboratory.  As specified by laboratory (generally dynamic recovery limits). Usually not performed and assessed based on LCS results.  Dynamic recovery limits as specified by                                                                                                                   | ESDAT generated summary of relative percent difference (RPD) results for field duplicate samples.  ESDAT generated summary of relative percent difference (RPD) results for field duplicate samples.  ESDAT generated summary of field blank analytical results.  ESDAT generated summary of field blank analytical results.  ESDAT generated summary of field blank analytical results.  Laboratory reports  Laboratory reports                                         | N/A  N/A  N/A  N/A  Yes  Yes      | RPD exceedance for iron (84%) and zinc (35%) in primary |
| Field (Intra-laboratory) Duplicate Sampling and Analysis  Secondary Inter-laborator) Duplicate Sampling and Analysis  Field Rinsate Blank Preparation & Analysis  Trip Blank Sampling and Analysis  Laboratory Duplicates  Laboratory Control Samples  Certified Reference Material  Surrogate Recovery                                                  | Field Duplicate samples used assess the variability in analyte concentration between samples collected from the sample location and the reproducibility of the laboratory analysis. Where required, resubmission of previously analysed samples for chemicals within their holding times may be undertaken to further assess precision level of precision.  Results are accurate and free from laboratory error. Secondary duplicate samples sent to a secondary laboratory to assess the accuracy of the analyte concentrations reported by the primary laboratory.  Cross contamination of samples does not occur between sampling locations due to carry-over from sampling equipment.  Cross contamination between samples does not occur in transit or as an artefact of the sampling handling procedure.  Laboratory duplicates are used to test the precision of the laboratory measurements.  Laboratory control samples (LCS) are used to assess overall method performance. In general these samples are similar in composition to environmental samples, and contain known amounts of the analytes of interest.  CRM samples are used to monitor the accuracy of analyses performed by the laboratory.  Surrogates are organic compounds that are similar in chemical composition to analytes of interest and are spiked into environmental samples prior to sample                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Analysed for same chemicals as primary sample.  RPD <30% of mean conc. where both conc. >20 x LOR  RPD <50% of mean conc. where both conc. 10-20 x LOR  RPD No limit where both conc. < 10 x LOR  Analysed for same chemicals as primary sample.  RPD <30% of mean conc. where both conc. >20 x LOR.  RPD <50% of mean conc. where both conc. 10-20 x LOR.  RPD olimit where both conc. < 10 x LOR.  RPD no limit where both conc. < 10 x LOR.  Analyte concentrations below LORs.  Analyte concentrations below LORs.  As specified by laboratory.  Dynamic recovery limits as specified by laboratory.  As specified by laboratory (generally dynamic recovery limits). Usually not performed and assessed based on LCS results.  Dynamic recovery limits as specified by laboratory.                                                              | ESDAT generated summary of relative percent difference (RPD) results for field duplicate samples.  ESDAT generated summary of relative percent difference (RPD) results for field duplicate samples.  ESDAT generated summary of field blank analytical results.  ESDAT generated summary of field blank analytical results.  ESDAT generated summary of field blank analytical results.  Laboratory reports  Laboratory reports                                         | N/A  N/A  N/A  Yes  Yes           | RPD exceedance for iron (84%) and zinc (35%) in primary |
| Field (Intra-laboratory) Duplicate Sampling and Analysis  Secondary Inter-laborator) Duplicate Sampling and Analysis  Field Rinsate Blank Preparation & Analysis  Trip Blank Sampling and Analysis  Laboratory Duplicates  Laboratory Control Samples  Certified Reference Material  Surrogate Recovery                                                  | Field Duplicate samples used assess the variability in analyte concentration between samples collected from the sample location and the reproducibility of the laboratory analysis. Where required, resubmission of previously analysed samples for chemicals within their holding times may be undertaken to further assess precision level of precision.  Results are accurate and free from laboratory error. Secondary duplicate samples sent to a secondary laboratory to assess the accuracy of the analyte concentrations reported by the primary laboratory.  Cross contamination of samples does not occur between sampling locations due to carry-over from sampling equipment.  Cross contamination between samples does not occur in transit or as an artefact of the sampling handling procedure.  Laboratory duplicates are used to test the precision of the laboratory measurements.  Laboratory control samples (LCS) are used to assess overall method performance. In general these samples are similar in composition to environmental samples, and contain known amounts of the analytes of interest.  CRM samples are used to monitor the accuracy of analyses performed by the laboratory.  Surrogates are organic compounds that are similar in chemical composition to analytes of interest and are                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Analysed for same chemicals as primary sample.  RPD <30% of mean conc. where both conc. >20 x LOR  RPD <50% of mean conc. where both conc. 10-20 x LOR  RPD No limit where both conc. < 10 x LOR  Analysed for same chemicals as primary sample.  RPD <30% of mean conc. where both conc. >20 x LOR.  RPD <50% of mean conc. where both conc. 10-20 x LOR.  RPD olimit where both conc. < 10 x LOR.  RPD no limit where both conc. < 10 x LOR.  Analyte concentrations below LORs.  Analyte concentrations below LORs.  As specified by laboratory.  Dynamic recovery limits as specified by laboratory.  As specified by laboratory (generally dynamic recovery limits). Usually not performed and assessed based on LCS results.  Dynamic recovery limits as specified by laboratory.                                                              | ESDAT generated summary of relative percent difference (RPD) results for field duplicate samples.  ESDAT generated summary of relative percent difference (RPD) results for field duplicate samples.  ESDAT generated summary of field blank analytical results.  ESDAT generated summary of field blank analytical results.  ESDAT generated summary of field blank analytical results.  Laboratory reports  Laboratory reports                                         | N/A  N/A  N/A  Yes  Yes           | RPD exceedance for iron (84%) and zinc (35%) in primary |
| Field (Intra-laboratory) Duplicate Sampling and Analysis  Secondary Inter-laborator) Duplicate Sampling and Analysis  Field Rinsate Blank Preparation & Analysis  Trip Blank Sampling and Analysis  Laboratory Duplicates  Laboratory Control Samples  Certified Reference Material  Surrogate Recovery                                                  | Field Duplicate samples used assess the variability in analyte concentration between samples collected from the sample location and the reproducibility of the laboratory analysis. Where required, resubmission of previously analysed samples for chemicals within their holding times may be undertaken to further assess precision level of precision.  Results are accurate and free from laboratory error. Secondary duplicate samples sent to a secondary laboratory to assess the accuracy of the analyte concentrations reported by the primary laboratory.  Cross contamination of samples does not occur between sampling locations due to carry-over from sampling equipment.  Cross contamination between samples does not occur in transit or as an artefact of the sampling handling procedure.  Laboratory duplicates are used to test the precision of the laboratory measurements.  Laboratory control samples (LCS) are used to assess overall method performance. In general these samples are similar in composition to environmental samples, and contain known amounts of the analytes of interest.  CRM samples are used to monitor the accuracy of analyses performed by the laboratory.  Surrogates are organic compounds that are similar in chemical composition to analytes of interest and are spiked into environmental samples prior to sample preparation and analysis. Surrogate recoveries are used to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Analysed for same chemicals as primary sample.  RPD <30% of mean conc. where both conc. >20 x LOR  RPD <50% of mean conc. where both conc. 10-20 x LOR  RPD No limit where both conc. < 10 x LOR  Analysed for same chemicals as primary sample.  RPD <30% of mean conc. where both conc. >20 x LOR.  RPD <50% of mean conc. where both conc. 10-20 x LOR.  RPD olimit where both conc. < 10 x LOR.  RPD no limit where both conc. < 10 x LOR.  Analyte concentrations below LORs.  Analyte concentrations below LORs.  As specified by laboratory.  Dynamic recovery limits as specified by laboratory.  As specified by laboratory (generally dynamic recovery limits). Usually not performed and assessed based on LCS results.  Dynamic recovery limits as specified by laboratory.                                                              | ESDAT generated summary of relative percent difference (RPD) results for field duplicate samples.  ESDAT generated summary of relative percent difference (RPD) results for field duplicate samples.  ESDAT generated summary of field blank analytical results.  ESDAT generated summary of field blank analytical results.  ESDAT generated summary of field blank analytical results.  Laboratory reports  Laboratory reports                                         | N/A  N/A  N/A  Yes  Yes           | RPD exceedance for iron (84%) and zinc (35%) in primary |
| Field (Intra-laboratory) Duplicate Sampling and Analysis  Secondary Inter-laborator) Duplicate Sampling and Analysis  Field Rinsate Blank Preparation & Analysis  Trip Blank Sampling and Analysis  Laboratory Duplicates  Laboratory Control Samples  Certified Reference Material  Surrogate Recovery  Matrix Spike Recovery                           | Field Duplicate samples used assess the variability in analyte concentration between samples collected from the sample location and the reproducibility of the laboratory analysis. Where required, resubmission of previously analysed samples for chemicals within their holding times may be undertaken to further assess precision level of precision.  Results are accurate and free from laboratory error. Secondary duplicate samples sent to a secondary laboratory to assess the accuracy of the analyte concentrations reported by the primary laboratory.  Cross contamination of samples does not occur between sampling locations due to carry-over from sampling equipment.  Cross contamination between samples does not occur in transit or as an artefact of the sampling handling procedure.  Laboratory duplicates are used to test the precision of the laboratory measurements.  Laboratory control samples (LCS) are used to assess overall method performance. In general these samples are similar in composition to environmental samples, and contain known amounts of the analytes of interest.  CRM samples are used to monitor the accuracy of analyses performed by the laboratory.  Surrogates are organic compounds that are similar in chemical composition to analytes of interest and are spiked into environmental samples prior to sample preparation and analysis. Surrogate recoveries are used to evaluate matrix interference on a sample-specific basis.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Analysed for same chemicals as primary sample.  RPD <30% of mean conc. where both conc. >20 x LOR  RPD <50% of mean conc. where both conc. 10-20 x LOR  RPD No limit where both conc. < 10 x LOR  Analysed for same chemicals as primary sample.  RPD <30% of mean conc. where both conc. >20 x LOR.  RPD <50% of mean conc. where both conc. 10-20 x LOR.  RPD no limit where both conc. < 10 x LOR.  Analyte concentrations below LORs.  Analyte concentrations below LORs.  As specified by laboratory.  Dynamic recovery limits as specified by laboratory.  As specified by laboratory (generally dynamic recovery limits). Usually not performed and assessed based on LCS results.  Dynamic recovery limits as specified by laboratory.                                                                                                       | ESDAT generated summary of relative percent difference (RPD) results for field duplicate samples.  ESDAT generated summary of relative percent difference (RPD) results for field duplicate samples.  ESDAT generated summary of field blank analytical results.  ESDAT generated summary of field blank analytical results.  ESDAT generated summary of field blank analytical results.  Laboratory reports  Laboratory reports                                         | N/A  N/A  N/A  Yes  Yes           | RPD exceedance for iron (84%) and zinc (35%) in primary |
| Field (Intra-laboratory) Duplicate Sampling and Analysis  Secondary Inter-laborator) Duplicate Sampling and Analysis  Field Rinsate Blank Preparation & Analysis  Trip Blank Sampling and Analysis  Laboratory Duplicates  Laboratory Control Samples  Certified Reference Material  Surrogate Recovery  Matrix Spike Recovery                           | Field Duplicate samples used assess the variability in analyte concentration between samples collected from the sample location and the reproducibility of the laboratory analysis. Where required, resubmission of previously analysed samples for chemicals within their holding times may be undertaken to further assess precision level of precision.  Results are accurate and free from laboratory error. Secondary duplicate samples sent to a secondary laboratory to assess the accuracy of the analyte concentrations reported by the primary laboratory.  Cross contamination of samples does not occur between sampling locations due to carry-over from sampling equipment.  Cross contamination between samples does not occur in transit or as an artefact of the sampling handling procedure.  Laboratory duplicates are used to test the precision of the laboratory measurements.  Laboratory control samples (LCS) are used to assess overall method performance. In general these samples are similar in composition to environmental samples, and contain known amounts of the analytes of interest.  CRM samples are used to monitor the accuracy of analyses performed by the laboratory.  Surrogates are organic compounds that are similar in chemical composition to analytes of interest and are spiked into environmental samples prior to sample preparation and analysis. Surrogate recoveries are used to evaluate matrix interference on a sample-specific basis.  A matrix spike is an aliquot of a sample spiked with a known concentration of target analyte(s). Spiking occurs prior to sample preparation and analysis, and the results                                                                                                                                                                                                                                                                                                                                               | Analysed for same chemicals as primary sample.  RPD <30% of mean conc. where both conc. >20 x LOR  RPD <50% of mean conc. where both conc. 10-20 x LOR  RPD No limit where both conc. < 10 x LOR  Analysed for same chemicals as primary sample.  RPD <30% of mean conc. where both conc. >20 x LOR.  RPD <50% of mean conc. where both conc. 10-20 x LOR.  RPD no limit where both conc. < 10 x LOR.  Analyte concentrations below LORs.  Analyte concentrations below LORs.  As specified by laboratory.  Dynamic recovery limits as specified by laboratory.  As specified by laboratory (generally dynamic recovery limits). Usually not performed and assessed based on LCS results.  Dynamic recovery limits as specified by laboratory.                                                                                                       | ESDAT generated summary of relative percent difference (RPD) results for field duplicate samples.  ESDAT generated summary of relative percent difference (RPD) results for field duplicate samples.  ESDAT generated summary of field blank analytical results.  ESDAT generated summary of field blank analytical results.  Laboratory reports  Laboratory reports  Laboratory reports  Laboratory reports                                                             | N/A  N/A  N/A  Yes  Yes  Yes      | RPD exceedance for iron (84%) and zinc (35%) in primary |
| Field (Intra-laboratory) Duplicate Sampling and Analysis  Secondary Inter-laborator) Duplicate Sampling and Analysis  Field Rinsate Blank Preparation & Analysis  Trip Blank Sampling and Analysis  Laboratory Duplicates  Laboratory Control Samples  Certified Reference Material  Surrogate Recovery  Matrix Spike Recovery                           | Field Duplicate samples used assess the variability in analyte concentration between samples collected from the sample location and the reproducibility of the laboratory analysis. Where required, resubmission of previously analysed samples for chemicals within their holding times may be undertaken to further assess precision level of precision.  Results are accurate and free from laboratory error. Secondary duplicate samples sent to a secondary laboratory to assess the accuracy of the analyte concentrations reported by the primary laboratory.  Cross contamination of samples does not occur between sampling locations due to carry-over from sampling equipment.  Cross contamination between samples does not occur in transit or as an artefact of the sampling handling procedure.  Laboratory duplicates are used to test the precision of the laboratory measurements.  Laboratory control samples (LCS) are used to assess overall method performance. In general these samples are similar in composition to environmental samples, and contain known amounts of the analytes of interest.  CRM samples are used to monitor the accuracy of analyses performed by the laboratory.  Surrogates are organic compounds that are similar in chemical composition to analytes of interest and are spiked into environmental samples prior to sample preparation and analysis. Surrogate recoveries are used to evaluate matrix interference on a sample-specific basis.  A matrix spike is an aliquot of a sample spiked with a known concentration of target analyte(s). Spiking occurs prior to sample preparation and analysis, and the results are used to assess the bias of a method in a given sample matrix.                                                                                                                                                                                                                                                                             | Analysed for same chemicals as primary sample.  RPD <30% of mean conc. where both conc. >20 x LOR  RPD <50% of mean conc. where both conc. 10-20 x LOR  RPD No limit where both conc. < 10 x LOR  Analysed for same chemicals as primary sample.  RPD <30% of mean conc. where both conc. >20 x LOR.  RPD <50% of mean conc. where both conc. 10-20 x LOR.  RPD no limit where both conc. < 10 x LOR.  Analyte concentrations below LORs.  Analyte concentrations below LORs.  As specified by laboratory.  Dynamic recovery limits as specified by laboratory.  As specified by laboratory (generally dynamic recovery limits). Usually not performed and assessed based on LCS results.  Dynamic recovery limits as specified by laboratory.                                                                                                       | ESDAT generated summary of relative percent difference (RPD) results for field duplicate samples.  ESDAT generated summary of relative percent difference (RPD) results for field duplicate samples.  ESDAT generated summary of field blank analytical results.  ESDAT generated summary of field blank analytical results.  ESDAT generated summary of field blank analytical results.  Laboratory reports  Laboratory reports  Laboratory reports  Laboratory reports | N/A  N/A  N/A  Yes  Yes  Yes      | RPD exceedance for iron (84%) and zinc (35%) in primary |
| Field (Intra-laboratory) Duplicate Sampling and Analysis  Secondary Inter-laborator) Duplicate Sampling and Analysis  Field Rinsate Blank Preparation & Analysis  Trip Blank Sampling and Analysis  Laboratory Duplicates  Laboratory Control Samples  Certified Reference Material  Surrogate Recovery  Matrix Spike Recovery                           | Field Duplicate samples used assess the variability in analyte concentration between samples collected from the sample location and the reproducibility of the laboratory analysis. Where required, resubmission of previously analysed samples for chemicals within their holding times may be undertaken to further assess precision level of precision.  Results are accurate and free from laboratory error. Secondary duplicate samples sent to a secondary laboratory to assess the accuracy of the analyte concentrations reported by the primary laboratory.  Cross contamination of samples does not occur between sampling locations due to carry-over from sampling equipment.  Cross contamination between samples does not occur in transit or as an artefact of the sampling handling procedure.  Laboratory duplicates are used to test the precision of the laboratory measurements.  Laboratory control samples (LCS) are used to assess overall method performance. In general these samples are similar in composition to environmental samples, and contain known amounts of the analytes of interest.  CRM samples are used to monitor the accuracy of analyses performed by the laboratory.  Surrogates are organic compounds that are similar in chemical composition to analytes of interest and are spiked into environmental samples prior to sample preparation and analysis. Surrogate recoveries are used to evaluate matrix interference on a sample-specific basis.  A matrix spike is an aliquot of a sample spiked with a known concentration of target analyte(s). Spiking occurs prior to sample preparation and analysis, and the results are used to assess the bias of a method in a given sample matrix.  Method blanks are prepared to represent the sample matrix as closely as possible and                                                                                                                                                                                       | Analysed for same chemicals as primary sample.  RPD <30% of mean conc. where both conc. >20 x LOR  RPD <50% of mean conc. where both conc. 10-20 x LOR  RPD No limit where both conc. < 10 x LOR  Analysed for same chemicals as primary sample.  RPD <30% of mean conc. where both conc. >20 x LOR.  RPD <50% of mean conc. where both conc. 10-20 x LOR.  RPD no limit where both conc. < 10 x LOR.  Analyte concentrations below LORs.  Analyte concentrations below LORs.  As specified by laboratory.  Dynamic recovery limits as specified by laboratory.  As specified by laboratory (generally dynamic recovery limits). Usually not performed and assessed based on LCS results.  Dynamic recovery limits as specified by laboratory.  Recovery 70 - 130% or dynamic limits if specified by laboratory.                                     | ESDAT generated summary of relative percent difference (RPD) results for field duplicate samples.  ESDAT generated summary of relative percent difference (RPD) results for field duplicate samples.  ESDAT generated summary of field blank analytical results.  ESDAT generated summary of field blank analytical results.  Laboratory reports  Laboratory reports  Laboratory reports  Laboratory reports                                                             | N/A  N/A  N/A  Yes  Yes  Yes      | RPD exceedance for iron (84%) and zinc (35%) in primary |
| Field (Intra-laboratory) Duplicate Sampling and Analysis  Secondary Inter-laborator) Duplicate Sampling and Analysis  Field Rinsate Blank Preparation & Analysis  Trip Blank Sampling and Analysis  Laboratory Duplicates  Laboratory Control Samples  Certified Reference Material  Surrogate Recovery  Matrix Spike Recovery                           | Field Duplicate samples used assess the variability in analyte concentration between samples collected from the sample location and the reproducibility of the laboratory analysis. Where required, resubmission of previously analysed samples for chemicals within their holding times may be undertaken to further assess precision level of precision.  Results are accurate and free from laboratory error. Secondary duplicate samples sent to a secondary laboratory to assess the accuracy of the analyte concentrations reported by the primary laboratory.  Cross contamination of samples does not occur between sampling locations due to carry-over from sampling equipment.  Cross contamination between samples does not occur in transit or as an artefact of the sampling handling procedure.  Laboratory duplicates are used to test the precision of the laboratory measurements.  Laboratory control samples (LCS) are used to assess overall method performance. In general these samples are similar in composition to environmental samples, and contain known amounts of the analytes of interest.  CRM samples are used to monitor the accuracy of analyses performed by the laboratory.  Surrogates are organic compounds that are similar in chemical composition to analytes of interest and are spiked into environmental samples prior to sample preparation and analysis. Surrogate recoveries are used to evaluate matrix interference on a sample-specific basis.  A matrix spike is an aliquot of a sample spiked with a known concentration of target analyte(s). Spiking occurs prior to sample preparation and analysis, and the results are used to assess the bias of a method in a given sample matrix.  Method blanks are prepared to represent the sample matrix as closely as possible and prepared/extracted/lagested and analysed exactly like field samples. These blanks are used by the laboratory to                                                                       | Analysed for same chemicals as primary sample.  RPD <30% of mean conc. where both conc. >20 x LOR  RPD <50% of mean conc. where both conc. 10-20 x LOR  RPD No limit where both conc. < 10 x LOR  Analysed for same chemicals as primary sample.  RPD <30% of mean conc. where both conc. >20 x LOR.  RPD <50% of mean conc. where both conc. 10-20 x LOR.  RPD no limit where both conc. < 10 x LOR.  Analyte concentrations below LORs.  Analyte concentrations below LORs.  As specified by laboratory.  Dynamic recovery limits as specified by laboratory.  As specified by laboratory (generally dynamic recovery limits). Usually not performed and assessed based on LCS results.  Dynamic recovery limits as specified by laboratory.  Recovery 70 - 130% or dynamic limits if specified by laboratory.                                     | ESDAT generated summary of relative percent difference (RPD) results for field duplicate samples.  ESDAT generated summary of relative percent difference (RPD) results for field duplicate samples.  ESDAT generated summary of field blank analytical results.  ESDAT generated summary of field blank analytical results.  ESDAT generated summary of field blank analytical results.  Laboratory reports  Laboratory reports  Laboratory reports  Laboratory reports | N/A  N/A  N/A  Yes  Yes  Yes      | RPD exceedance for iron (84%) and zinc (35%) in primary |
| Field (Intra-laboratory) Duplicate Sampling and Analysis  Secondary Inter-laborator) Duplicate Sampling and Analysis  Field Rinsate Blank Preparation & Analysis  Trip Blank Sampling and Analysis  Laboratory Duplicates  Laboratory Control Samples  Certified Reference Material  Surrogate Recovery  Matrix Spike Recovery                           | Field Duplicate samples used assess the variability in analyte concentration between samples collected from the sample location and the reproducibility of the laboratory analysis. Where required, resubmission of previously analysed samples for chemicals within their holding times may be undertaken to further assess precision level of precision.  Results are accurate and free from laboratory error. Secondary duplicate samples sent to a secondary laboratory to assess the accuracy of the analyte concentrations reported by the primary laboratory.  Cross contamination of samples does not occur between sampling locations due to carry-over from sampling equipment.  Cross contamination between samples does not occur in transit or as an artefact of the sampling handling procedure.  Laboratory duplicates are used to test the precision of the laboratory measurements.  Laboratory control samples (LCS) are used to assess overall method performance. In general these samples are similar in composition to environmental samples, and contain known amounts of the analytes of interest.  CRM samples are used to monitor the accuracy of analyses performed by the laboratory.  Surrogates are organic compounds that are similar in chemical composition to analytes of interest and are spiked into environmental samples prior to sample preparation and analysis. Surrogate recoveries are used to evaluate matrix interference on a sample-specific basis.  A matrix spike is an aliquot of a sample spiked with a known concentration of target analyte(s). Spiking occurs prior to sample preparation and analysis, and the results are used to assess the bias of a method in a given sample matrix.  Method blanks are prepared to represent the sample matrix as closely as possible and prepared/extracted/digested and analysed exactly like field                                                                                                                           | Analysed for same chemicals as primary sample.  RPD <30% of mean conc. where both conc. >20 x LOR  RPD <50% of mean conc. where both conc. 10-20 x LOR  RPD No limit where both conc. < 10 x LOR  Analysed for same chemicals as primary sample.  RPD <30% of mean conc. where both conc. >20 x LOR.  RPD <50% of mean conc. where both conc. 10-20 x LOR.  RPD no limit where both conc. < 10 x LOR.  Analyte concentrations below LORs.  Analyte concentrations below LORs.  As specified by laboratory.  Dynamic recovery limits as specified by laboratory.  As specified by laboratory (generally dynamic recovery limits). Usually not performed and assessed based on LCS results.  Dynamic recovery limits as specified by laboratory.  Recovery 70 - 130% or dynamic limits if specified by laboratory.                                     | ESDAT generated summary of relative percent difference (RPD) results for field duplicate samples.  ESDAT generated summary of relative percent difference (RPD) results for field duplicate samples.  ESDAT generated summary of field blank analytical results.  ESDAT generated summary of field blank analytical results.  ESDAT generated summary of field blank analytical results.  Laboratory reports  Laboratory reports  Laboratory reports  Laboratory reports | N/A  N/A  N/A  Yes  Yes  Yes      | RPD exceedance for iron (84%) and zinc (35%) in primary |
| Field (Intra-laboratory) Duplicate Sampling and Analysis  Secondary Inter-laborator) Duplicate Sampling and Analysis  Field Rinsate Blank Preparation & Analysis  Trip Blank Sampling and Analysis  Laboratory Duplicates  Laboratory Control Samples  Certified Reference Material  Surrogate Recovery  Matrix Spike Recovery                           | Field Duplicate samples used assess the variability in analyte concentration between samples collected from the sample location and the reproducibility of the laboratory analysis. Where required, resubmission of previously analysed samples for chemicals within their holding times may be undertaken to further assess precision level of precision.  Results are accurate and free from laboratory error. Secondary duplicate samples sent to a secondary laboratory to assess the accuracy of the analyte concentrations reported by the primary laboratory.  Cross contamination of samples does not occur between sampling locations due to carry-over from sampling equipment.  Cross contamination between samples does not occur in transit or as an artefact of the sampling handling procedure.  Laboratory duplicates are used to test the precision of the laboratory measurements.  Laboratory control samples (LCS) are used to assess overall method performance. In general these samples are similar in composition to environmental samples, and contain known amounts of the analytes of interest.  CRM samples are used to monitor the accuracy of analyses performed by the laboratory.  Surrogates are organic compounds that are similar in chemical composition to analytes of interest and are spiked into environmental samples prior to sample preparation and analysis. Surrogate recoveries are used to evaluate matrix interference on a sample-specific basis.  A matrix spike is an aliquot of a sample spiked with a known concentration of target analyte(s). Spiking occurs prior to sample preparation and analysis, and the results are used to assess the bias of a method in a given sample matrix.  Method blanks are prepared to represent the sample matrix as closely as possible and prepared/extraced/laigested and analysed exactly like field samples. Tracese blanks are used by the laboratory to assess contamination introduced during sample                       | Analysed for same chemicals as primary sample.  RPD <30% of mean conc. where both conc. >20 x LOR  RPD <50% of mean conc. where both conc. 10-20 x LOR  RPD No limit where both conc. < 10 x LOR  Analysed for same chemicals as primary sample.  RPD <30% of mean conc. where both conc. >20 x LOR.  RPD <50% of mean conc. where both conc. 10-20 x LOR.  RPD no limit where both conc. < 10 x LOR.  Analyte concentrations below LORs.  Analyte concentrations below LORs.  As specified by laboratory.  Dynamic recovery limits as specified by laboratory.  As specified by laboratory (generally dynamic recovery limits). Usually not performed and assessed based on LCS results.  Dynamic recovery limits as specified by laboratory.  Recovery 70 - 130% or dynamic limits if specified by laboratory.                                     | ESDAT generated summary of relative percent difference (RPD) results for field duplicate samples.  ESDAT generated summary of relative percent difference (RPD) results for field duplicate samples.  ESDAT generated summary of field blank analytical results.  ESDAT generated summary of field blank analytical results.  ESDAT generated summary of field blank analytical results.  Laboratory reports  Laboratory reports  Laboratory reports  Laboratory reports | N/A  N/A  N/A  Yes  Yes  Yes      | RPD exceedance for iron (84%) and zinc (35%) in primary |
| Field (Intra-laboratory) Duplicate Sampling and Analysis  Secondary Inter-laborator) Duplicate Sampling and Analysis  Field Rinsate Blank Preparation & Analysis  Trip Blank Sampling and Analysis  Laboratory Duplicates  Laboratory Control Samples  Certified Reference Material  Surrogate Recovery  Matrix Spike Recovery  Laboratory Method Blanks | Field Duplicate samples used assess the variability in analyte concentration between samples collected from the sample location and the reproducibility of the laboratory analysis. Where required, resubmission of previously analysed samples for chemicals within their holding times may be undertaken to further assess precision level of precision.  Results are accurate and free from laboratory error. Secondary duplicate samples sent to a secondary laboratory to assess the accuracy of the analyte concentrations reported by the primary laboratory.  Cross contamination of samples does not occur between sampling locations due to carry-over from sampling equipment.  Cross contamination between samples does not occur in transit or as an artefact of the sampling handling procedure.  Laboratory duplicates are used to test the precision of the laboratory measurements.  Laboratory control samples (LCS) are used to assess overall method performance. In general these samples are similar in composition to environmental samples, and contain known amounts of the analytes of interest.  CRM samples are used to monitor the accuracy of analyses performed by the laboratory.  Surrogates are organic compounds that are similar in chemical composition to analytes of interest and are spiked into environmental samples prior to sample preparation and analysis. Surrogate recoveries are used to evaluate matrix interference on a sample-specific basis.  A matrix spike is an aliquot of a sample spiked with a known concentration of target analyte(s). Spiking occurs prior to sample preparation and analysis, and the results are used to assess the bias of a method in a given sample matrix.  Method blanks are prepared to represent the sample matrix as closely as possible and prepared/extraced/laigested and analysed exactly like field samples. Tracese blanks are used by the laboratory to assess contamination introduced during sample                       | Analysed for same chemicals as primary sample.  RPD <30% of mean conc. where both conc. >20 x LOR  RPD <50% of mean conc. where both conc. 10-20 x LOR  RPD No limit where both conc. < 10 x LOR  Analysed for same chemicals as primary sample.  RPD <30% of mean conc. where both conc. >20 x LOR.  RPD <50% of mean conc. where both conc. 10-20 x LOR.  RPD no limit where both conc. < 10 x LOR.  Analyte concentrations below LORs.  Analyte concentrations below LORs.  As specified by laboratory.  Dynamic recovery limits as specified by laboratory.  As specified by laboratory (generally dynamic recovery limits). Usually not performed and assessed based on LCS results.  Dynamic recovery limits as specified by laboratory.  Recovery 70 - 130% or dynamic limits if specified by laboratory.  Analyte concentrations below LORs. | ESDAT generated summary of relative percent difference (RPD) results for field duplicate samples.  ESDAT generated summary of relative percent difference (RPD) results for field duplicate samples.  ESDAT generated summary of field blank analytical results.  ESDAT generated summary of field blank analytical results.  ESDAT generated summary of field blank analytical results.  Laboratory reports  Laboratory reports  Laboratory reports  Laboratory reports | N/A  N/A  N/A  Yes  Yes  Yes      | RPD exceedance for iron (84%) and zinc (35%) in primary |
| Field (Intra-laboratory) Duplicate Sampling and Analysis  Secondary Inter-laborator) Duplicate Sampling and Analysis  Field Rinsate Blank Preparation & Analysis  Trip Blank Sampling and Analysis  Laboratory Duplicates  Laboratory Control Samples  Certified Reference Material  Surrogate Recovery  Matrix Spike Recovery  Laboratory Method Blanks | Field Duplicate samples used assess the variability in analyte concentration between samples collected from the sample location and the reproducibility of the laboratory analysis. Where required, resubmission of previously analysed samples for chemicals within their holding times may be undertaken to further assess precision level of precision.  Results are accurate and free from laboratory error. Secondary duplicate samples sent to a secondary laboratory to assess the accuracy of the analyte concentrations reported by the primary laboratory.  Cross contamination of samples does not occur between sampling locations due to carry-over from sampling equipment.  Cross contamination between samples does not occur in transit or as an artefact of the sampling handling procedure.  Laboratory duplicates are used to test the precision of the laboratory measurements.  Laboratory control samples (LCS) are used to assess overall method performance. In general these samples are similar in composition to environmental samples, and contain known amounts of the analytes of interest.  CRM samples are used to monitor the accuracy of analyses performed by the laboratory.  Surrogates are organic compounds that are similar in chemical composition to analytes of interest and are spiked into environmental samples prior to sample preparation and analysis. Surrogate recoveries are used to evaluate matrix interference on a sample-specific basis.  A matrix spike is an aliquot of a sample spiked with a known concentration of target analyte(s). Spiking occurs prior to sample preparation and analysis, and the results are used to assess the bias of a method in a given sample matrix.  Method blanks are prepared to represent the sample matrix as closely as possible and prepared/extracted/legested and analysed exactly like field samples. These blanks are used by the laboratory to assess contamination introduced during sample preparation activities. | Analysed for same chemicals as primary sample.  RPD <30% of mean conc. where both conc. >20 x LOR  RPD <50% of mean conc. where both conc. 10-20 x LOR  RPD No limit where both conc. < 10 x LOR  Analysed for same chemicals as primary sample.  RPD <30% of mean conc. where both conc. >20 x LOR.  RPD <50% of mean conc. where both conc. 10-20 x LOR.  RPD no limit where both conc. < 10 x LOR.  Analyte concentrations below LORs.  Analyte concentrations below LORs.  As specified by laboratory.  Dynamic recovery limits as specified by laboratory.  As specified by laboratory (generally dynamic recovery limits). Usually not performed and assessed based on LCS results.  Dynamic recovery limits as specified by laboratory.  Recovery 70 - 130% or dynamic limits if specified by laboratory.  Analyte concentrations below LORs. | ESDAT generated summary of relative percent difference (RPD) results for field duplicate samples.  ESDAT generated summary of relative percent difference (RPD) results for field duplicate samples.  ESDAT generated summary of field blank analytical results.  ESDAT generated summary of field blank analytical results.  Laboratory reports  Laboratory reports  Laboratory reports  Laboratory reports  Laboratory reports  Laboratory reports                     | N/A  N/A  N/A  Yes  Yes  Yes  Yes | RPD exceedance for iron (84%) and zinc (35%) in primary |
| Field (Intra-laboratory) Duplicate Sampling and Analysis  Secondary Inter-laborator) Duplicate Sampling and Analysis  Field Rinsate Blank Preparation & Analysis  Trip Blank Sampling and Analysis  Laboratory Duplicates  Laboratory Control Samples  Certified Reference Material  Surrogate Recovery  Matrix Spike Recovery  Laboratory Method Blanks | Field Duplicate samples used assess the variability in analyte concentration between samples collected from the sample location and the reproducibility of the laboratory analysis. Where required, resubmission of previously analysed samples for chemicals within their holding times may be undertaken to further assess precision level of precision.  Results are accurate and free from laboratory error. Secondary duplicate samples sent to a secondary laboratory to assess the accuracy of the analyte concentrations reported by the primary laboratory.  Cross contamination of samples does not occur between sampling locations due to carry-over from sampling equipment.  Cross contamination between samples does not occur in transit or as an artefact of the sampling handling procedure.  Laboratory duplicates are used to test the precision of the laboratory measurements.  Laboratory control samples (LCS) are used to assess overall method performance. In general these samples are similar in composition to environmental samples, and contain known amounts of the analytes of interest.  CRM samples are used to monitor the accuracy of analyses performed by the laboratory.  Surrogates are organic compounds that are similar in chemical composition to analytes of interest and are spiked into environmental samples prior to sample preparation and analysis. Surrogate recoveries are used to evaluate matrix interference on a sample-specific basis.  A matrix spike is an aliquot of a sample spiked with a known concentration of target analyte(s). Spiking occurs prior to sample preparation and analysis, and the results are used to assess the bias of a method in a given sample matrix.  Method blanks are prepared to represent the sample matrix as closely as possible and prepared/extracted/legested and analysed exactly like field samples. These blanks are used by the laboratory to assess contamination introduced during sample preparation activities. | Analysed for same chemicals as primary sample.  RPD <30% of mean conc. where both conc. >20 x LOR  RPD <50% of mean conc. where both conc. 10-20 x LOR  RPD No limit where both conc. < 10 x LOR  Analysed for same chemicals as primary sample.  RPD <30% of mean conc. where both conc. >20 x LOR.  RPD <50% of mean conc. where both conc. 10-20 x LOR.  RPD no limit where both conc. < 10 x LOR.  Analyte concentrations below LORs.  Analyte concentrations below LORs.  As specified by laboratory.  Dynamic recovery limits as specified by laboratory.  As specified by laboratory (generally dynamic recovery limits). Usually not performed and assessed based on LCS results.  Dynamic recovery limits as specified by laboratory.  Recovery 70 - 130% or dynamic limits if specified by laboratory.  Analyte concentrations below LORs. | ESDAT generated summary of relative percent difference (RPD) results for field duplicate samples.  ESDAT generated summary of relative percent difference (RPD) results for field duplicate samples.  ESDAT generated summary of field blank analytical results.  ESDAT generated summary of field blank analytical results.  Laboratory reports  Laboratory reports  Laboratory reports  Laboratory reports  Laboratory reports  Laboratory reports                     | N/A  N/A  N/A  Yes  Yes  Yes  Yes | RPD exceedance for iron (84%) and zinc (35%) in primary |

ES2327328

QC102

ES2327328

MW3

1020195

QC202

ES2327328

MW3



|                                               |              | Location Code | MW3          | MW3          | ł   | MW3          | MW3            | 1   | MW3          | MW3          | 1              | MW3          | MW3        | 4                |
|-----------------------------------------------|--------------|---------------|--------------|--------------|-----|--------------|----------------|-----|--------------|--------------|----------------|--------------|------------|------------------|
|                                               |              |               |              |              | ł   |              |                | -   |              |              | 4              |              |            | 4                |
|                                               |              | Date          |              | 08/02/2023   |     | 08/02/2023   | 08/02/2023     |     | 14/08/2023   | 14/08/2023   | 14/08/202      |              | 14/08/2023 |                  |
|                                               |              | Sample Type   | Normal       | Field_D      | RPD | Normal       | Interlab_D     | RPD | Normal       | Field_D      | RPD            | Normal       | Interlab_D | RPD              |
|                                               | Unit         | EQL           |              |              |     |              |                |     |              |              |                |              |            |                  |
| Inorganics                                    |              |               |              |              |     |              |                |     |              |              |                |              |            |                  |
| Ammonia (as N)                                | mg/L         | 0.01          | 0.22         | -            | -   | 0.22         | -              | -   | 0.29         | -            | -              | 0.29         | -          | -                |
| Nitrate (as N)                                | mg/L         | 0.01          | <0.01        | _            | _   | <0.01        | -              | _   | <0.01        | -            | <del>  -</del> | <0.01        | < 0.02     | 0                |
| Nitrite (as N)                                | mg/L         | 0.01          | <0.01        | -            | _   | <0.01        | -              | _   | <0.01        | -            | -              | <0.01        | <0.02      | 0                |
| Total Oxidised Nitrogen (as N)                | mg/L         | 0.01          | <0.01        | 0.02         | 67  | <0.01        | -              | -   | <0.01        | _            | -              | <0.01        | < 0.05     | 0                |
| Total Kjeldahl Nitrogen                       | mg/L         | 0.1           | 1.0          | 1.3          | 26  | 1.0          | -              | -   | 0.4          | -            | -              | 0.4          | 0.5        | 22               |
| Total Nitrogen (as N)                         | mg/L         | 0.1           | 1.0          | 1.3          | 26  | 1.0          | 0.5            | 67  | 0.4          | -            | -              | 0.4          | 0.5        | 22               |
| Phosphorus (as P)                             | mg/L         | 0.01          | 0.12         | 0.10         | 18  | 0.12         | 0.8            | 148 | 0.02         | -            | -              | 0.02         | -          | <del>  -  </del> |
| Metals                                        |              |               |              |              |     |              |                |     |              |              |                |              |            | 1                |
| Arsenic (filtered)                            | mg/L         | 0.001         | < 0.010      | < 0.010      | 0   | < 0.010      | 0.004          | 0   | < 0.010      | < 0.010      | 0              | < 0.010      | 0.002      | 0                |
| Cadmium (filtered)                            | mg/L         | 0.0001        | < 0.0010     | < 0.0010     | 0   | < 0.0010     | 0.0001         | 0   | < 0.0010     | < 0.0010     | 0              | < 0.0010     | <0.0002    | 0                |
| Chromium (filtered)                           | mg/L         | 0.001         | < 0.010      | < 0.010      | 0   | < 0.010      | 0.002          | 0   | < 0.010      | < 0.010      | 0              | < 0.010      | 0.002      | 0                |
| Copper (filtered)                             | mg/L         | 0.001         | < 0.010      | < 0.010      | 0   | < 0.010      | < 0.001        | 0   | < 0.010      | < 0.010      | 0              | < 0.010      | 0.002      | 0                |
| Iron (filtered)                               | mg/L         | 0.01          | 5.05         | 5.15         | 2   | 5.05         | 5.7            | 12  | 5.64         | 6.04         | 7              | 5.64         | 2.3        | 84               |
| Lead (filtered)                               | mg/L         | 0.001         | < 0.010      | <0.010       | 0   | <0.010       | 0.001          | 0   | <0.010       | <0.010       | 0              | <0.010       | 0.002      | 0                |
| Manganese (filtered)                          | mg/L         | 0.001         | 5.99         | 6.15         | 3   | 5.99         | 5.8            | 3   | 6.39         | 6.57         | 3              | 6.39         | 5.9        | 8                |
| Mercury (filtered)                            | mg/L         | 0.00005       | < 0.0001     | < 0.0001     | 0   | <0.0001      | <0.00005       | 0   | < 0.0001     | < 0.0001     | 0              | <0.0001      | < 0.0001   | 0                |
| Nickel (filtered)                             | mg/L         | 0.001         | 0.191        | 0.167        | 13  | 0.191        | 0.18           | 6   | 0.207        | 0.205        | 1              | 0.207        | 0.18       | 14               |
| Zinc (filtered)                               | mg/L         | 0.001         | 0.225        | 0.196        | 14  | 0.225        | 0.23           | 2   | 0.122        | 0.074        | 49             | 0.122        | 0.086      | 35               |
| BTEX                                          |              |               |              |              |     |              |                |     |              |              |                |              |            |                  |
| Benzene                                       | μg/L         | 1             | <1           | <1           | 0   | <1           | <1             | 0   | <1           | <1           | 0              | <1           | <1         | 0                |
| Toluene                                       | μg/L         | 1             | <2           | <2           | 0   | <2           | <1             | 0   | <2           | <2           | 0              | <2           | <1         | 0                |
| Ethylbenzene                                  | μg/L         | 1             | <2           | <2           | 0   | <2           | <1             | 0   | <2           | <2           | 0              | <2           | <1         | 0                |
| Xylene (m & p)                                | μg/L         | 2             | <2           | <2           | 0   | <2           | <2             | 0   | <2           | <2           | 0              | <2           | <2         | 0                |
| Xylene (o)                                    | μg/L         | 1             | <2           | <2           | 0   | <2           | <1             | 0   | <2           | <2           | 0              | <2           | <1         | 0                |
| Total Xylene                                  | μg/L         | 2             | <2           | <2           | 0   | <2           | -              | -   | <2           | <2           | 0              | <2           | <3         | 0                |
| Total BTEX                                    | μg/L         | 1             | <1           | <1           | 0   | <1           | -              | -   | <1           | <1           | 0              | <1           | -          | -                |
| Total Petroleum Hydrocarbons                  |              |               |              |              |     |              |                |     |              |              |                |              |            | T                |
| C6-C9 Fraction                                | μg/L         | 10            | <20          | <20          | 0   | <20          | <10            | 0   | <20          | <20          | 0              | <20          | <20        | 0                |
| C10-C14 Fraction                              | μg/L         | 50            | <50          | <50          | 0   | <50          | <50            | 0   | <50          | <50          | 0              | <50          | <50        | 0                |
| C15-C28 Fraction                              | μg/L         | 100           | <100         | <100         | 0   | <51          | 140            | 33  | <100         | <100         | 0              | <100         | <100       | 0                |
| C29-C36 Fraction                              | μg/L         | 50            | <50          | <50          | 0   | <52          | <100           | 0   | <50          | <50          | 0              | <50          | <100       | 0                |
| C10-C36 Fraction (Sum)                        | μg/L         | 50            | <50          | <50          | 0   | <53          | 140            | 95  | <50          | <50          | 0              | <50          | <100       | 0                |
| Total Recoverable Hydrocarbons                |              |               |              |              |     |              |                |     |              |              |                |              |            |                  |
| C6-C10 Fraction                               | μg/L         | 10            | <20          | <20          | 0   | <20          | <10            | 0   | <20          | <20          | 0              | <20          | <20        | 0                |
| C6-C10 Fraction minus BTEX (F1)               | μg/L         | 10            | <20          | <20          | 0   | <20          | <10            | 0   | <20          | <20          | 0              | <20          | <20        | 0                |
| >C10-C16 Fraction                             | μg/L         | 50            | <100         | <100         | 0   | <100         | 130            | 26  | <100         | <100         | 0              | <100         | <50        | 0                |
| >C10-C16 Fraction minus naphthalene (F2)      | μg/L         | 50            | <100         | <100         | 0   | <100         | 130            | 26  | <100         | <100         | 0              | <100         | <50        | 0                |
| >C16-C34 Fraction                             | μg/L         | 100           | <100         | <100         | 0   | <100         | <100           | 0   | <100         | <100         | 0              | <100         | <100       | 0                |
| >C34-C40 Fraction                             | μg/L         | 100           | <100         | <100         | 0   | <100         | <100           | 0   | <100         | <100         | 0              | <100         | <100       | 0                |
| >C10-C40 Fraction (Sum)                       | μg/L         | 50            | <100         | <100         | 0   | <100         | 130            | 26  | <100         | <100         | 0              | <100         | <100       | 0                |
| PAHs Acenaphthene                             | ug/l         | 4             | -10          | -10          |     | 24 O         | -1             | 0   | -10          | -10          | 0              | -10          | -1         | + _              |
| Acenaphthylene                                | μg/L<br>μg/L | 1             | <1.0<br><1.0 | <1.0<br><1.0 | 0   | <1.0<br><1.0 | <1<br><1       | 0   | <1.0<br><1.0 | <1.0<br><1.0 | 0              | <1.0<br><1.0 | <1<br><1   | 0                |
| Anthracene                                    | μg/L<br>μg/L | 1<br>1        | <1.0         | <1.0         | 0   | <1.0         | <1             | 0   | <1.0         | <1.0         | 0              | <1.0         | <1         | 0                |
| Benz(a)anthracene                             | μg/L         | 1<br>1        | <1.0         | <1.0         | 0   | <1.0         | <1             | 0   | <1.0         | <1.0         | 0              | <1.0         | <1         | 0                |
| Benzo(a)pyrene                                | μg/L<br>μg/L | 0.5           | <0.5         | <0.5         | 0   | <0.5         | <1             | 0   | <0.5         | <0.5         | 0              | <0.5         | <1         | 0                |
| Benzo(b+j)fluoranthene                        | μg/L<br>μg/L | 0.5           | <1.0         | <1.0         | 0   | <1.0         | -              |     | <1.0         | <1.0         | 0              | <1.0         | <1         | 0                |
| Benzo(g,h,i)perylene                          | μg/L         | 1             | <1.0         | <1.0         | 0   | <1.0         | <u>-</u><br><1 | 0   | <1.0         | <1.0         | 0              | <1.0         | <1         | 0                |
| Benzo(b+j+k)fluoranthene                      | μg/L         | 2             | - 1.0        | · 1.0        | -   | -1.0         | <2             |     | 71.0         | -1.0         | -              | - 1.0        | -          | + -              |
| Benzo(k)fluoranthene                          | μg/L         | 1             | <1.0         | <1.0         | 0   | <1.0         | -              | _   | <1.0         | <1.0         | 0              | <1.0         | <1         | 0                |
| Chrysene                                      | μg/L         | 1             | <1.0         | <1.0         | 0   | <1.0         | <1             | 0   | <1.0         | <1.0         | 0              | <1.0         | <1         | 0                |
| Dibenz(a,h)anthracene                         | μg/L         | 1             | <1.0         | <1.0         | 0   | <1.0         | <1             | 0   | <1.0         | <1.0         | 0              | <1.0         | <1         | 0                |
| Fluoranthene                                  | μg/L         | <u> </u>      | <1.0         | <1.0         | 0   | <1.0         | <1             | 0   | <1.0         | <1.0         | 0              | <1.0         | <1         | 0                |
| Fluorene                                      | μg/L         | <u> </u>      | <1.0         | <1.0         | 0   | <1.0         | <1             | 0   | <1.0         | <1.0         | 0              | <1.0         | <1         | 0                |
| Indeno(1,2,3-c,d)pyrene                       | μg/L         | <u> </u>      | <1.0         | <1.0         | 0   | <1.0         | <1             | 0   | <1.0         | <1.0         | 0              | <1.0         | <1         | 0                |
| Naphthalene                                   | μg/L         | <u>·</u><br>1 | <1.0         | <1.0         | 0   | <1.0         | <1             | 0   | <1.0         | <1.0         | 0              | <1.0         | <1         | 0                |
| Phenanthrene                                  | μg/L         | 1             | <1.0         | <1.0         | 0   | <1.0         | <1             | 0   | <1.0         | <1.0         | 0              | <1.0         | <1         | 0                |
| Pyrene                                        | μg/L         | <u>·</u><br>1 | <1.0         | <1.0         | 0   | <1.0         | <1             | 0   | <1.0         | <1.0         | 0              | <1.0         | <1         | 0                |
| Benzo(a)pyrene TEQ (Zero)                     | μg/L         | 0.5           | <0.5         | <0.5         | 0   | <0.5         | -              | -   | <0.5         | <0.5         | 0              | <0.5         | -          | -                |
| Sum of Polycyclic aromatic hydrocarbons (PAH) | µg/L         | 0.5           | <0.5         | <0.5         | 0   | <0.5         | _              | _   | <0.5         | <0.5         | 0              | <0.5         | <1         | 0                |
| (17.11)                                       | F-9' -       | 0.0           | -0.0         | .0.0         |     | .0.0         | Ī.             | Ī   | .0.0         | .0.0         |                | .010         | * 1        | <u> </u>         |

ES2304011

MW3

316159

QC201

**Lab Report No.** ES2304011 ES2304011

MW3

QC101

Field ID

<sup>\*</sup>RPDs have only been considered where a concentration is greater than 1 times the EQL.

<sup>\*\*</sup>Elevated RPDs are highlighted as per QAQC Profile settings (Acceptable RPDs for each EQL multiplier range are: 1000 (1 - 10 x EQL); 50 (10 - 20 x EQL); 30 ( > 20 x EQL) )

<sup>\*\*\*</sup>Interlab Duplicates are matched on a per compound basis as methods vary between laboratories. Any methods in the row header relate to those used in the primary laboratory



|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | Field ID       | QC301        | QC302        | QC401      | QC502      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------------|--------------|--------------|------------|------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | Date           | 08/02/2023   | 14/08/2023   | 06/02/2023 | 01/08/2023 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | Sample Type    | Rinsate      | Rinsate      | Trip Blank | Trip Blank |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | Lab Report No. | ES2304011    | ES2327328    | ES2304011  | ES2327328  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Unit         | EQL            |              |              |            |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Onic         | LQL            |              |              |            |            |
| Inorganics Table 10 in 1 | /1           | 0.04           | .0.04        |              |            |            |
| Total Oxidised Nitrogen (as N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | mg/L         | 0.01           | <0.01        | -            | -          | -          |
| Total Kjeldahl Nitrogen Total Nitrogen (as N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mg/L         | 0.1            | <0.1         | -            | -          | -          |
| Phosphorus (as P)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | mg/L         | 0.1<br>0.01    | <0.1         | -            | -          | -          |
| Metals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | mg/L         | 0.01           | <0.01        | -            | -          | -          |
| Arsenic (filtered)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | mg/L         | 0.001          | <0.001       | <0.001       | _          | _          |
| Cadmium (filtered)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | mg/L         | 0.001          | <0.001       | <0.001       | <u>-</u>   |            |
| Chromium (filtered)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | mg/L         | 0.001          | <0.001       | <0.001       | _          |            |
| Copper (filtered)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | mg/L         | 0.001          | <0.001       | <0.001       | _          |            |
| Iron (filtered)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mg/L         | 0.05           | <0.05        | <0.05        | _          | _          |
| Lead (filtered)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mg/L         | 0.001          | <0.001       | <0.001       | -          | _          |
| Manganese (filtered)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | mg/L         | 0.001          | <0.01        | 0.038        | -          | _          |
| Mercury (filtered)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | mg/L         | 0.0001         | < 0.0001     | <0.0001      | -          | -          |
| Nickel (filtered)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | mg/L         | 0.001          | < 0.001      | < 0.001      | -          | -          |
| Zinc (filtered)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mg/L         | 0.005          | < 0.005      | < 0.005      | -          | -          |
| BTEX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |                |              |              |            |            |
| Benzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | μg/L         | 1              | <1           | <1           | <1         | <1         |
| Toluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | μg/L         | 2              | <2           | <2           | <2         | <2         |
| Ethylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | μg/L         | 2              | <2           | <2           | <2         | <2         |
| Xylene (m & p)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | μg/L         | 2              | <2           | <2           | <2         | <2         |
| Xylene (o)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | μg/L         | 2              | <2           | <2           | <2         | <2         |
| Total Xylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | μg/L         | 2              | <2           | <2           | <2         | <2         |
| Total BTEX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | μg/L         | 1              | <1           | <1           | <1         | <1         |
| Total Petroleum Hydrocarbons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |                |              |              |            |            |
| C6-C9 Fraction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | μg/L         | 20             | <20          | <20          | <20        | <20        |
| C10-C14 Fraction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | μg/L         | 50             | <50          | <50          | -          | -          |
| C15-C28 Fraction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | μg/L         | 100            | <100         | <100         | -          | -          |
| C29-C36 Fraction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | μg/L         | 50             | <50          | <50          | -          | -          |
| C10-C36 Fraction (Sum)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | μg/L         | 50             | <50          | <50          | -          | -          |
| Total Recoverable Hydrocarbons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ,,           |                |              |              |            |            |
| C6-C10 Fraction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | μg/L         | 20             | <20          | <20          | <20        | <20        |
| C6-C10 Fraction minus BTEX (F1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | μg/L         | 20             | <20          | <20          | <20        | <20        |
| >C10-C16 Fraction >C10-C16 Fraction minus naphthalene (F2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | µg/L         | 100            | <100         | <100         | -          | -          |
| >C10-C16 Fraction minus naphtnaiene (F2) >C16-C34 Fraction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | µg/L         | 100            | <100         | <100         | -          | -          |
| >C34-C40 Fraction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | µg/L         | 100            | <100         | <100         | -          | -          |
| >C10-C40 Fraction (Sum)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | μg/L<br>μg/L | 100<br>100     | <100<br><100 | <100<br><100 | -          | <u> </u>   |
| PAHs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | µg/L         | 100            | <100         | <u> </u>     | -          |            |
| Acenaphthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | μg/L         | 1              | <1.0         | <1.0         | _          | _          |
| Acenaphthylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | μg/L         | 1              | <1.0         | <1.0         | <u>-</u>   |            |
| Anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | µg/L         | 1              | <1.0         | <1.0         | _          |            |
| Benz(a)anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | μg/L         | 1              | <1.0         | <1.0         | _          | _          |
| Benzo(a)pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | μg/L         | 0.5            | <0.5         | <0.5         | _          | _          |
| Benzo(b+j)fluoranthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | μg/L         | 1              | <1.0         | <1.0         | _          | _          |
| Benzo(g,h,i)perylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | μg/L         | 1              | <1.0         | <1.0         | -          | -          |
| Benzo(k)fluoranthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | μg/L         | 1              | <1.0         | <1.0         | -          | -          |
| Chrysene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | μg/L         | 1              | <1.0         | <1.0         | -          | -          |
| Dibenz(a,h)anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | μg/L         | 1              | <1.0         | <1.0         | -          | -          |
| Fluoranthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | μg/L         | 1              | <1.0         | <1.0         | -          | -          |
| Fluorene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | μg/L         | 1              | <1.0         | <1.0         | -          | -          |
| Indeno(1,2,3-c,d)pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | μg/L         | 1              | <1.0         | <1.0         | -          |            |
| Naphthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | μg/L         | 1              | <1.0         | <1.0         | <5         | <5         |
| Phenanthrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | μg/L         | 1              | <1.0         | <1.0         | -          | -          |
| Pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | μg/L         | 1              | <1.0         | <1.0         | -          | -          |
| Benzo(a)pyrene TEQ (Zero)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | μg/L         | 0.5            | <0.5         | <0.5         | -          | -          |
| Sum of Polycyclic aromatic hydrocarbons (PAH)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | μg/L         | 0.5            | <0.5         | <0.5         | -          | -          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                |              |              |            |            |

Project: Surface Water Monitoring

**Table D4: Trip Spike Analytical Results** 

Client: ReDirect Recycling
Site Address: 24 Davis Road, Wetherill Park NSW



|                | Field ID QC501  Date 6/02/2023 T | TSC            | Recovery   | QC402 | TSC |            |     |
|----------------|----------------------------------|----------------|------------|-------|-----|------------|-----|
|                |                                  | Sample Type    | Trip Spike |       |     | Trip Spike |     |
|                | _                                | Lab Report No. | ES2304011  |       | %   |            |     |
|                | Unit                             | EQL            |            |       |     |            |     |
| BTEXN          |                                  |                |            |       |     |            |     |
| Benzene        | μg/L                             | 1              | 16         | 20    | 80  | 16         | 20  |
| Toluene        | μg/L                             | 2              | 15         | 20    | 75  | 16         | 20  |
| Ethylbenzene   | μg/L                             | 2              | 14         | 20    | 70  | 17         | 20  |
| Xylene (m & p) | μg/L                             | 2              | 15         | 20    | 75  | 18         | 20  |
| Xylene (o)     | μg/L                             | 2              | 15         | 20    | 75  | 19         | 20  |
| Total Xylene   | μg/L                             | 2              | 30         | 40    | 75  | 37         | 40  |
| Total BTEX     | μg/L                             | 1              | 75         | 100   | 75  | 86         | 100 |
| Naphthalene    | μg/L                             | 1              | 15         | 20    | 75  | 17         | 20  |

# Appendix E: Laboratory Reports



# **Chain of Custody Documentation**

| Senversa Pty I                            | td                        |                       |                   | Laboratory:                    | ALS NSW                           |                     |                  |                              |                                          |                               | 1.16000        |              | A            | nalysis | Required |       |                                                                                         |
|-------------------------------------------|---------------------------|-----------------------|-------------------|--------------------------------|-----------------------------------|---------------------|------------------|------------------------------|------------------------------------------|-------------------------------|----------------|--------------|--------------|---------|----------|-------|-----------------------------------------------------------------------------------------|
| www.senversa.com.au<br>ABN 89 132 231 380 |                           |                       |                   | Address:<br>Contact:<br>Phone: | Sample Receipt                    |                     |                  |                              | -                                        |                               |                |              |              |         |          |       | Comments: e.g. Highly contaminated sample; hazardous materials present; trace LORs etc. |
| Job Number:                               | b Number: S20102 Pt       |                       |                   | Purchase Order:                |                                   |                     |                  | TALS                         | TALS                                     | AND                           |                |              |              |         |          |       | Environmental Divisi                                                                    |
| Project Name:                             |                           | Wetherill             | Park WME          | Quote No:                      | EN/103/21                         |                     |                  | 8 ME                         | 8 ME                                     | ANIONS /                      |                |              |              |         |          |       | Sydney Work Order Reference ES230401                                                    |
| Sampled By:                               |                           | Bec (                 | Chapple           | Turn Around Time:              | Standard 7 D                      | Davs                | _                | AH/                          | AH/                                      | ANIC                          |                |              | 3            | N N     |          |       | Work Order Reference                                                                    |
|                                           |                           |                       | a Walsh           |                                | 1                                 | of 1                | XN               | EX/F                         | EXF                                      | NS,                           | _              |              |              | AND     |          |       | E3230401                                                                                |
| Project Manag<br>Email Report 1           |                           | Bec.Chapple@          | senversa.com.au,  | Page: Phone/Mobile:            | 0408038593, 040                   |                     | W-18 (TRH/BTEXN) | W-26 (TRH/BTEX/PAH/8 METALS) | W-27 (TRH/BTEX/PAH/8 METALS/<br>PHENOLS) | NT-14 (CATIONS,<br>NUTRIENTS) | NT-11 (TN, TP) | EA015H (TDS) | EA025H (TSS) | 田       |          |       |                                                                                         |
|                                           |                           | Sample Information    |                   |                                | Container Infor                   | mation              | 18 (1            | 1) 97                        | ENG<br>ENG                               | 14 (                          | 1.             | 015F         | 0251         | EG005F  |          | 9     |                                                                                         |
| Lab ID                                    | Sample ID                 | Matrix *              | Date              | Time                           | Type / Code                       | Total Bottles       | Š                | ×-×                          | N H                                      | E D                           | Z              | EA           | EA           | EG      |          | НОГР  |                                                                                         |
| 1                                         | QC401                     | W                     | 8/02/2023         | AM                             | VOA                               | 1                   | Х                |                              |                                          |                               |                |              |              |         |          |       |                                                                                         |
| 2                                         | QC501                     | W                     | 8/02/2023         | AM                             | VOA                               | 1                   | Х                |                              |                                          |                               |                |              |              |         |          |       |                                                                                         |
| 3                                         | QC301                     | W                     | 8/02/2023         | AM                             | VS x2, N, UA, VSA                 | 5                   |                  | Х                            |                                          |                               | X              |              |              | X       |          |       | Telephone: +61-2-8784 8555                                                              |
| 4                                         | MW1                       | W                     | 8/02/2023         | AM                             | P, VS x2, N, UA, VSA              | 6                   |                  |                              | X                                        | Х                             |                |              |              | X       |          |       |                                                                                         |
| 5                                         | MW2                       | W                     | 8/02/2023         | AM                             | P, VS x2, N, UA, VSA              | 6                   |                  |                              | X                                        | X                             |                |              |              | X       |          |       |                                                                                         |
| 6                                         | MW3                       | W                     | 8/02/2023         | AM                             | P, VS x2, N, UA, VSA              | 6                   |                  |                              | ×                                        | Х                             |                |              |              | ×       |          |       |                                                                                         |
| 2                                         | MW4                       | W                     | 8/02/2023         | AM                             | P, VS x2, N, UA, VSA              | 6                   |                  |                              | Х                                        | X                             |                |              |              | X       |          |       |                                                                                         |
| 8                                         | MW6                       | W                     | 8/02/2023         | AM                             | P, VS x2, N, UA, VSA              | 6                   |                  |                              | X                                        | X                             |                |              |              | Х       |          |       |                                                                                         |
| 9                                         | QC101                     | W                     | 8/02/2023         | AM                             | VS x2, N, UA, VSA                 | 5                   |                  | X                            |                                          |                               | X              |              |              | X       |          |       |                                                                                         |
| X                                         | QC201                     | W                     | 8/02/2023         | AM                             | VS x2, N, UA, VSA                 | 5                   |                  |                              |                                          |                               |                |              |              |         |          |       | Please forward to Envirolab                                                             |
|                                           |                           |                       |                   |                                |                                   |                     |                  |                              |                                          |                               |                |              |              |         |          | -     |                                                                                         |
|                                           |                           |                       |                   |                                |                                   |                     |                  |                              |                                          |                               |                |              |              |         | 1        |       |                                                                                         |
|                                           |                           |                       |                   |                                |                                   |                     |                  |                              |                                          |                               |                |              |              |         |          |       |                                                                                         |
|                                           |                           |                       |                   |                                |                                   |                     |                  | -                            | -                                        |                               |                |              |              |         |          | -     |                                                                                         |
|                                           |                           |                       |                   |                                |                                   | -                   |                  | -                            | -                                        | -                             | -              |              |              | -       |          | -     |                                                                                         |
|                                           |                           |                       |                   |                                |                                   | -                   |                  | -                            |                                          |                               |                | -            |              |         | -        |       |                                                                                         |
|                                           |                           |                       |                   |                                |                                   |                     | -                |                              | -                                        |                               |                |              |              |         |          |       |                                                                                         |
| Total                                     | est that proper field sam | nling procedures in   | accordance with S | enversa standard nro           | cedures and/or project            | 47<br>Sampler Name: |                  | Bec                          | Chapple                                  |                               | Signat         | ure:         | 111          | Alth    |          | Date: | 8/02/202                                                                                |
| specifications                            | were used during the co   | ollection of these sa | mples:            | onroida diamana pro            |                                   |                     |                  |                              |                                          |                               |                | 0            | 网            | W.      |          |       |                                                                                         |
| Relinquished                              |                           |                       |                   | . T                            | Method of Shipment (if ap         | plicable):          |                  |                              | Receiv                                   |                               |                | 95.0         | - 1          | -       |          |       | Date: 812123                                                                            |
| Name/Signatur                             | e:                        | Bec Chapple           |                   | Date: 8/2/23                   | Carrier / Reference #:            |                     |                  |                              | Name/                                    | Signature                     | 9:             | 70           | 10           | 1       |          |       | Date: 81413                                                                             |
| Of:                                       | A:                        |                       |                   | Time: 12:00 PM<br>Date:        | Date/Time: Carrier / Reference #: |                     |                  |                              | Name/                                    | Signature                     | p.             | -            | 15           | 6       |          |       | Date:                                                                                   |
| Name/Signatur<br>Of:                      | e.                        |                       |                   | Time:                          | Date/Time:                        |                     |                  |                              | Of:                                      | orginature                    |                |              |              |         |          |       | Time:                                                                                   |
| Name/Signatur                             | e:                        |                       |                   | Date:                          | Carrier / Reference #:            |                     |                  |                              | Name/                                    | Signature                     | e:             |              |              |         |          |       | Date:                                                                                   |
| Of:                                       |                           |                       |                   | Time:                          | Date/Time:                        |                     |                  |                              | Of:                                      |                               |                |              |              |         |          |       | Time:                                                                                   |

Completed by: \_\_\_\_\_ Checked by: \_\_\_\_



### **CERTIFICATE OF ANALYSIS**

Work Order : ES2304011

: SENVERSA PTY LTD

Contact : EMMA WALSH

Address : Level 24, 1 Market St, Sydney NSW 2000

SYDNEY NSW 2000

Telephone : 02 8252 0000

Project : S20102 Wetherill Park WME

Order number : ----

Client

C-O-C number : ----

Sampler : Bec Chapple

Site : ---

Quote number : SY/103/22

No. of samples received : 9
No. of samples analysed : 9

Page : 1 of 11

Laboratory : Environmental Division Sydney

Contact : Helen Simpson

Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

Telephone : +61 2 8784 8555

Date Samples Received : 08-Feb-2023 12:20

Date Analysis Commenced : 08-Feb-2023

Issue Date : 14-Feb-2023 17:19



This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

#### Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Ankit Joshi Senior Chemist - Inorganics Sydney Inorganics, Smithfield, NSW Edwandy Fadjar Organic Coordinator Sydney Organics, Smithfield, NSW

Page : 2 of 11 Work Order : ES2304011

Client : SENVERSA PTY LTD
Project : S20102 Wetherill Park WME



#### **General Comments**

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contract for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.
- EK067G: LOR raised for Total P on sample 4 due to sample matrix.
- EK059G: LOR raised for NOx on sample 4 due to sample matrix.
- EK058G: LOR raised for Nitrate on sample 4 due to sample matrix.
- EP075 (SIM): Where reported, Benzo(a)pyrene Toxicity Equivalent Quotient (TEQ) per the NEPM (2013) is the sum total of the concentration of the eight carcinogenic PAHs multiplied by their Toxicity Equivalence Factor (TEF) relative to Benzo(a)pyrene. TEF values are provided in brackets as follows: Benz(a)anthracene (0.1), Chrysene (0.01), Benzo(b+j) & Benzo(k)fluoranthene (0.1), Benzo(a)pyrene (1.0), Indeno(1.2.3.cd)pyrene (0.1), Dibenz(a.h)anthracene (1.0), Benzo(g.h.i)perylene (0.01). Less than LOR results for 'TEQ Zero' are treated as zero.
- EP080: Where reported, Total Xylenes is the sum of the reported concentrations of m&p-Xylene and o-Xylene at or above the LOR.
- EP075(SIM): Where reported, Total Cresol is the sum of the reported concentrations of 2-Methylphenol and 3- & 4-Methylphenol at or above the LOR.
- As per QWI EN55-3 Data Interpreting Procedures, Ionic balances are typically calculated using Major Anions Chloride, Alkalinity and Sulfate; and Major Cations Calcium, Magnesium, Potassium and Sodium. Where applicable and dependent upon sample matrix, the Ionic Balance may also include the additional contribution of Ammonia, Dissolved Metals by ICPMS and H+ to the Cations and Nitrate, SiO2 and Fluoride to the Anions
- EG020: LORs have been raised for some samples due to matrix interference (High sample salinity)
- EK057G: LOR raised for Nitrite due to sample matrix
- EP080: Sample TRIP SPIKE contains volatile compounds spiked into the sample containers prior to dispatch from the laboratory. BTEXN compounds spiked at 20 ug/L.
- EA016: Calculated TDS is determined from Electrical conductivity using a conversion factor of 0.65.
- Sodium Adsorption Ratio (where reported): Where results for Na, Ca or Mg are <LOR, a concentration at half the reported LOR is incorporated into the SAR calculation. This represents a conservative approach for Na relative to the assumption that <LOR = zero concentration and a conservative approach for Ca & Mg relative to the assumption that <LOR is equivalent to the LOR concentration.

Page : 3 of 11 Work Order : ES2304011

Client : SENVERSA PTY LTD
Project : S20102 Wetherill Park WME



| Sub-Matrix: WATER (Matrix: WATER)      |                  |        | Sample ID      | QC401             | QC501             | QC301             | MW1               | MW2               |
|----------------------------------------|------------------|--------|----------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|                                        |                  | Sampli | ng date / time | 06-Feb-2023 00:00 | 06-Feb-2023 00:00 | 08-Feb-2023 00:00 | 08-Feb-2023 00:00 | 08-Feb-2023 00:00 |
| Compound                               | CAS Number       | LOR    | Unit           | ES2304011-001     | ES2304011-002     | ES2304011-003     | ES2304011-004     | ES2304011-005     |
|                                        |                  |        |                | Result            | Result            | Result            | Result            | Result            |
| EA005P: pH by PC Titrator              |                  |        |                |                   |                   |                   |                   |                   |
| pH Value                               |                  | 0.01   | pH Unit        |                   |                   |                   | 7.74              | 7.70              |
| EA006: Sodium Adsorption Ratio (SAI    | R)               |        |                |                   |                   |                   |                   |                   |
| ^ Sodium Adsorption Ratio              |                  | 0.01   | -              |                   |                   |                   | 30.4              | 31.6              |
| EA010P: Conductivity by PC Titrator    |                  |        |                |                   |                   |                   |                   |                   |
| Electrical Conductivity @ 25°C         |                  | 1      | μS/cm          |                   |                   |                   | 25800             | 25700             |
| EA016: Calculated TDS (from Electrical | al Conductivity) |        |                |                   |                   |                   |                   |                   |
| Total Dissolved Solids (Calc.)         |                  | 1      | mg/L           |                   |                   |                   | 16800             | 16700             |
| EA065: Total Hardness as CaCO3         |                  |        |                |                   |                   |                   |                   |                   |
| Total Hardness as CaCO3                |                  | 1      | mg/L           |                   |                   |                   | 4020              | 3980              |
| ED037P: Alkalinity by PC Titrator      |                  |        |                |                   |                   |                   |                   |                   |
| Hydroxide Alkalinity as CaCO3          | DMO-210-001      | 1      | mg/L           |                   |                   |                   | <1                | <1                |
| Carbonate Alkalinity as CaCO3          | 3812-32-6        | 1      | mg/L           |                   |                   |                   | <1                | <1                |
| Bicarbonate Alkalinity as CaCO3        | 71-52-3          | 1      | mg/L           |                   |                   |                   | 916               | 815               |
| Total Alkalinity as CaCO3              |                  | 1      | mg/L           |                   |                   |                   | 916               | 815               |
| ED041G: Sulfate (Turbidimetric) as SC  | 04.2- by DA      |        |                |                   |                   |                   |                   |                   |
| Sulfate as SO4 - Turbidimetric         | 14808-79-8       | 1      | mg/L           |                   |                   |                   | 691               | 756               |
| ED045G: Chloride by Discrete Analyse   |                  |        | 5              |                   |                   |                   |                   |                   |
| Chloride                               | 16887-00-6       | 1      | mg/L           |                   |                   |                   | 8840              | 8800              |
| ED093F: Dissolved Major Cations        | 10007 00 0       | -      | g-             |                   |                   |                   |                   |                   |
| Calcium Calcium                        | 7440-70-2        | 1      | mg/L           |                   |                   |                   | 273               | 232               |
| Magnesium                              | 7439-95-4        | 1      | mg/L           |                   |                   |                   | 810               | 826               |
| Sodium                                 | 7440-23-5        | 1      | mg/L           |                   |                   |                   | 4430              | 4590              |
| Potassium                              | 7440-09-7        | 1      | mg/L           |                   |                   |                   | 25                | 21                |
| EG005(ED093)F: Dissolved Metals by     |                  |        |                |                   |                   |                   | 1                 |                   |
| Iron                                   | 7439-89-6        | 0.05   | mg/L           |                   |                   | <0.05             | 4.97              | 0.40              |
| Manganese                              | 7439-96-5        | 0.01   | mg/L           |                   |                   | <0.01             | 0.92              | 0.96              |
| EG020F: Dissolved Metals by ICP-MS     | 7 100 00 0       |        |                |                   |                   |                   |                   |                   |
| Arsenic                                | 7440-38-2        | 0.001  | mg/L           |                   |                   | <0.001            | 0.011             | 0.004             |
| Cadmium                                | 7440-43-9        | 0.0001 | mg/L           |                   |                   | <0.0001           | <0.0001           | <0.0001           |
| Chromium                               | 7440-47-3        | 0.001  | mg/L           |                   |                   | <0.001            | <0.001            | <0.001            |
| Copper                                 | 7440-50-8        | 0.001  | mg/L           |                   |                   | <0.001            | 0.015             | 0.011             |
| Lead                                   | 7439-92-1        | 0.001  | mg/L           |                   |                   | <0.001            | <0.001            | <0.001            |
| Nickel                                 | 7440-02-0        | 0.001  | mg/L           |                   |                   | <0.001            | 0.023             | 0.006             |

Page : 4 of 11 Work Order : ES2304011

Client : SENVERSA PTY LTD
Project : S20102 Wetherill Park WME



| Sub-Matrix: WATER (Matrix: WATER)                              |                         | Sam           | ple ID     | QC401             | QC501             | QC301             | MW1               | MW2               |
|----------------------------------------------------------------|-------------------------|---------------|------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|                                                                |                         | Sampling date | / time     | 06-Feb-2023 00:00 | 06-Feb-2023 00:00 | 08-Feb-2023 00:00 | 08-Feb-2023 00:00 | 08-Feb-2023 00:00 |
| Compound                                                       | CAS Number              | LOR UI        | nit        | ES2304011-001     | ES2304011-002     | ES2304011-003     | ES2304011-004     | ES2304011-005     |
|                                                                |                         |               |            | Result            | Result            | Result            | Result            | Result            |
| EG020F: Dissolved Metals by ICP-                               | MS - Continued          |               |            |                   |                   |                   |                   |                   |
| Zinc                                                           | 7440-66-6               | 0.005 mg      | g/L        |                   |                   | <0.005            | 0.012             | 0.008             |
| EG035F: Dissolved Mercury by FIM                               | //S                     |               |            |                   |                   |                   |                   |                   |
| Mercury                                                        |                         | 0.0001 mg     | g/L        |                   |                   | <0.0001           | <0.0001           | <0.0001           |
| EK040P: Fluoride by PC Titrator                                |                         |               |            |                   |                   |                   |                   |                   |
| Fluoride                                                       | 16984-48-8              | 0.1 mg        | g/L        |                   |                   |                   | 0.8               | 0.7               |
| EK055G: Ammonia as N by Discre                                 |                         |               |            |                   |                   |                   |                   |                   |
| Ammonia as N                                                   | 7664-41-7               | 0.01 mg       | g/L        |                   |                   |                   | 0.71              | 0.52              |
| EK057G: Nitrite as N by Discrete A                             |                         |               |            |                   |                   |                   |                   | 1                 |
| Nitrite as N                                                   | 14797-65-0              | 0.01 mg       | q/L        |                   |                   |                   | <0.10             | <0.01             |
| EK058G: Nitrate as N by Discrete                               |                         |               |            |                   |                   |                   |                   |                   |
| Nitrate as N                                                   | 14797-55-8              | 0.01 mg       | 1/r        |                   |                   |                   | <0.10             | 0.03              |
|                                                                |                         |               | , <u> </u> |                   |                   |                   | 0.10              | V.00              |
| EK059G: Nitrite plus Nitrate as N ( Nitrite + Nitrate as N     | (NOX) by Discrete Analy | 0.01 mg       | n/l        |                   |                   | <0.01             | <0.10             | 0.03              |
|                                                                | by Discuste Analyses    | 0.01          | <i>j</i> , |                   |                   | 10.01             | 10.10             | 0.00              |
| EK061G: Total Kjeldahl Nitrogen B Total Kjeldahl Nitrogen as N | y Discrete Analyser     | 0.1 mg        | 7/1        |                   |                   | <0.1              | 0.9               | 1.0               |
|                                                                |                         | ,             | y/ L       |                   |                   | <b>40.1</b>       | 0.5               | 1.0               |
| EK062G: Total Nitrogen as N (TKN                               | + NOx) by Discrete Ana  |               | - /I       |                   |                   | <0.1              |                   | 10                |
| ^ Total Nitrogen as N                                          |                         | 0.1 mg        | J/L        |                   |                   | <0.1              | 0.9               | 1.0               |
| EK067G: Total Phosphorus as P b                                | y Discrete Analyser     | 0.04          | - /I       |                   |                   | 40.04             | 40.05             |                   |
| Total Phosphorus as P                                          |                         | 0.01 mg       | ]/L        |                   |                   | <0.01             | <0.05             | 0.06              |
| EK071G: Reactive Phosphorus as                                 |                         |               |            |                   |                   |                   |                   |                   |
| Reactive Phosphorus as P                                       | 14265-44-2              | 0.01 mg       | g/L        |                   |                   |                   | <0.01             | 0.02              |
| EN055: Ionic Balance                                           |                         |               |            |                   |                   |                   |                   |                   |
| Ø Total Anions                                                 |                         | 0.01 me       |            |                   |                   |                   | 282               | 280               |
| ø Total Cations                                                |                         | 0.01 me       |            |                   |                   |                   | 274               | 280               |
| Ø Ionic Balance                                                |                         | 0.01 %        | 6          |                   |                   |                   | 1.52              | 0.09              |
| EP075(SIM)A: Phenolic Compound                                 |                         |               |            |                   |                   |                   |                   |                   |
| Phenol                                                         | 108-95-2                | 1.0 μg        |            |                   |                   |                   | <1.0              | <1.0              |
| 2-Chlorophenol                                                 | 95-57-8                 | 1.0 μς        |            |                   |                   |                   | <1.0              | <1.0              |
| 2-Methylphenol                                                 | 95-48-7                 | 1.0 μg        |            |                   |                   |                   | <1.0              | <1.0              |
| 3- & 4-Methylphenol                                            | 1319-77-3               | 2.0 μg        |            |                   |                   |                   | <2.0              | <2.0              |
| 2-Nitrophenol                                                  | 88-75-5                 | 1.0 µg        |            |                   |                   |                   | <1.0              | <1.0              |
| 2.4-Dimethylphenol                                             | 105-67-9                | 1.0 μg        |            |                   |                   |                   | <1.0              | <1.0              |
| 2.4-Dichlorophenol                                             | 120-83-2                | 1.0 µg        | J/L        |                   |                   |                   | <1.0              | <1.0              |

Page : 5 of 11 Work Order : ES2304011

Client : SENVERSA PTY LTD
Project : S20102 Wetherill Park WME



| Sub-Matrix: WATER (Matrix: WATER)      |                     |           | Sample ID      | QC401             | QC501             | QC301             | MW1               | MW2               |
|----------------------------------------|---------------------|-----------|----------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|                                        |                     | Sampli    | ng date / time | 06-Feb-2023 00:00 | 06-Feb-2023 00:00 | 08-Feb-2023 00:00 | 08-Feb-2023 00:00 | 08-Feb-2023 00:00 |
| Compound                               | CAS Number          | LOR       | Unit           | ES2304011-001     | ES2304011-002     | ES2304011-003     | ES2304011-004     | ES2304011-005     |
|                                        |                     |           |                | Result            | Result            | Result            | Result            | Result            |
| EP075(SIM)A: Phenolic Compounds        | - Continued         |           |                |                   |                   |                   |                   |                   |
| 2.6-Dichlorophenol                     | 87-65-0             | 1.0       | μg/L           |                   |                   |                   | <1.0              | <1.0              |
| 4-Chloro-3-methylphenol                | 59-50-7             | 1.0       | μg/L           |                   |                   |                   | <1.0              | <1.0              |
| 2.4.6-Trichlorophenol                  | 88-06-2             | 1.0       | μg/L           |                   |                   |                   | <1.0              | <1.0              |
| 2.4.5-Trichlorophenol                  | 95-95-4             | 1.0       | μg/L           |                   |                   |                   | <1.0              | <1.0              |
| Pentachlorophenol                      | 87-86-5             | 2.0       | μg/L           |                   |                   |                   | <2.0              | <2.0              |
| EP075(SIM)B: Polynuclear Aromatic      | Hydrocarbons        |           |                |                   |                   |                   |                   |                   |
| Naphthalene                            | 91-20-3             | 1.0       | μg/L           |                   |                   | <1.0              | <1.0              | <1.0              |
| Acenaphthylene                         | 208-96-8            | 1.0       | μg/L           |                   |                   | <1.0              | <1.0              | <1.0              |
| Acenaphthene                           | 83-32-9             | 1.0       | μg/L           |                   |                   | <1.0              | <1.0              | <1.0              |
| Fluorene                               | 86-73-7             | 1.0       | μg/L           |                   |                   | <1.0              | <1.0              | <1.0              |
| Phenanthrene                           | 85-01-8             | 1.0       | μg/L           |                   |                   | <1.0              | <1.0              | <1.0              |
| Anthracene                             | 120-12-7            | 1.0       | μg/L           |                   |                   | <1.0              | <1.0              | <1.0              |
| Fluoranthene                           | 206-44-0            | 1.0       | μg/L           |                   |                   | <1.0              | <1.0              | <1.0              |
| Pyrene                                 | 129-00-0            | 1.0       | μg/L           |                   |                   | <1.0              | <1.0              | <1.0              |
| Benz(a)anthracene                      | 56-55-3             | 1.0       | μg/L           |                   |                   | <1.0              | <1.0              | <1.0              |
| Chrysene                               | 218-01-9            | 1.0       | μg/L           |                   |                   | <1.0              | <1.0              | <1.0              |
| Benzo(b+j)fluoranthene                 | 205-99-2 205-82-3   | 1.0       | μg/L           |                   |                   | <1.0              | <1.0              | <1.0              |
| Benzo(k)fluoranthene                   | 207-08-9            | 1.0       | μg/L           |                   |                   | <1.0              | <1.0              | <1.0              |
| Benzo(a)pyrene                         | 50-32-8             | 0.5       | μg/L           |                   |                   | <0.5              | <0.5              | <0.5              |
| Indeno(1.2.3.cd)pyrene                 | 193-39-5            | 1.0       | μg/L           |                   |                   | <1.0              | <1.0              | <1.0              |
| Dibenz(a.h)anthracene                  | 53-70-3             | 1.0       | μg/L           |                   |                   | <1.0              | <1.0              | <1.0              |
| Benzo(g.h.i)perylene                   | 191-24-2            | 1.0       | μg/L           |                   |                   | <1.0              | <1.0              | <1.0              |
| ^ Sum of polycyclic aromatic hydrocarb | ons                 | 0.5       | μg/L           |                   |                   | <0.5              | <0.5              | <0.5              |
| ^ Benzo(a)pyrene TEQ (zero)            |                     | 0.5       | μg/L           |                   |                   | <0.5              | <0.5              | <0.5              |
| EP080/071: Total Petroleum Hydroca     | arbons              |           |                |                   |                   |                   |                   |                   |
| C6 - C9 Fraction                       |                     | 20        | μg/L           | <20               |                   | <20               | <20               | <20               |
| C10 - C14 Fraction                     |                     | 50        | μg/L           |                   |                   | <50               | <50               | <50               |
| C15 - C28 Fraction                     |                     | 100       | μg/L           |                   |                   | <100              | <100              | <100              |
| C29 - C36 Fraction                     |                     | 50        | μg/L           |                   |                   | <50               | <50               | <50               |
| ^ C10 - C36 Fraction (sum)             |                     | 50        | μg/L           |                   |                   | <50               | <50               | <50               |
| EP080/071: Total Recoverable Hydro     | ocarbons - NEPM 201 | 3 Fractio | ns             |                   |                   |                   |                   |                   |
| C6 - C10 Fraction                      | C6_C10              | 20        | μg/L           | <20               |                   | <20               | <20               | <20               |
| ^ C6 - C10 Fraction minus BTEX (F1)    | C6_C10-BTEX         | 20        | μg/L           | <20               |                   | <20               | <20               | <20               |

Page : 6 of 11 Work Order : ES2304011

Client : SENVERSA PTY LTD
Project : S20102 Wetherill Park WME



| Sub-Matrix: WATER (Matrix: WATER)       |                      |           | Sample ID      | QC401             | QC501             | QC301             | MW1               | MW2               |
|-----------------------------------------|----------------------|-----------|----------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|                                         | Sampling date / time |           |                | 06-Feb-2023 00:00 | 06-Feb-2023 00:00 | 08-Feb-2023 00:00 | 08-Feb-2023 00:00 | 08-Feb-2023 00:00 |
| Compound                                | CAS Number           | LOR       | Unit           | ES2304011-001     | ES2304011-002     | ES2304011-003     | ES2304011-004     | ES2304011-005     |
|                                         |                      |           |                | Result            | Result            | Result            | Result            | Result            |
| EP080/071: Total Recoverable Hydroca    | arbons - NEPM 201    | 3 Fractio | ns - Continued |                   |                   |                   |                   |                   |
| >C10 - C16 Fraction                     |                      | 100       | μg/L           |                   |                   | <100              | <100              | <100              |
| >C16 - C34 Fraction                     |                      | 100       | μg/L           |                   |                   | <100              | <100              | <100              |
| >C34 - C40 Fraction                     |                      | 100       | μg/L           |                   |                   | <100              | <100              | <100              |
| ^ >C10 - C40 Fraction (sum)             |                      | 100       | μg/L           |                   |                   | <100              | <100              | <100              |
| ^ >C10 - C16 Fraction minus Naphthalene |                      | 100       | μg/L           |                   |                   | <100              | <100              | <100              |
| (F2)                                    |                      |           |                |                   |                   |                   |                   |                   |
| EP080: BTEXN                            |                      |           |                |                   |                   |                   |                   |                   |
| Benzene                                 | 71-43-2              | 1         | μg/L           | <1                | 16                | <1                | <1                | <1                |
| Toluene                                 | 108-88-3             | 2         | μg/L           | <2                | 15                | <2                | <2                | <2                |
| Ethylbenzene                            | 100-41-4             | 2         | μg/L           | <2                | 14                | <2                | <2                | <2                |
| meta- & para-Xylene                     | 108-38-3 106-42-3    | 2         | μg/L           | <2                | 15                | <2                | <2                | <2                |
| ortho-Xylene                            | 95-47-6              | 2         | μg/L           | <2                | 15                | <2                | <2                | <2                |
| ^ Total Xylenes                         |                      | 2         | μg/L           | <2                | 30                | <2                | <2                | <2                |
| ^ Sum of BTEX                           |                      | 1         | μg/L           | <1                | 75                | <1                | <1                | <1                |
| Naphthalene                             | 91-20-3              | 5         | μg/L           | <5                | 17                | <5                | <5                | <5                |
| EP075(SIM)S: Phenolic Compound Su       | rrogates             |           |                |                   |                   |                   |                   |                   |
| Phenol-d6                               | 13127-88-3           | 1.0       | %              |                   |                   | 28.1              | 31.6              | 30.2              |
| 2-Chlorophenol-D4                       | 93951-73-6           | 1.0       | %              |                   |                   | 58.8              | 62.4              | 60.6              |
| 2.4.6-Tribromophenol                    | 118-79-6             | 1.0       | %              |                   |                   | 60.4              | 70.1              | 71.9              |
| EP075(SIM)T: PAH Surrogates             |                      |           |                |                   |                   |                   |                   |                   |
| 2-Fluorobiphenyl                        | 321-60-8             | 1.0       | %              |                   |                   | 69.7              | 68.8              | 73.0              |
| Anthracene-d10                          | 1719-06-8            | 1.0       | %              |                   |                   | 94.2              | 98.3              | 93.6              |
| 4-Terphenyl-d14                         | 1718-51-0            | 1.0       | %              |                   |                   | 80.2              | 85.6              | 80.2              |
| EP080S: TPH(V)/BTEX Surrogates          |                      |           |                |                   |                   |                   |                   |                   |
| 1.2-Dichloroethane-D4                   | 17060-07-0           | 2         | %              | 99.7              | 97.1              | 89.9              | 96.8              | 100               |
| Toluene-D8                              | 2037-26-5            | 2         | %              | 99.4              | 98.2              | 94.5              | 99.5              | 98.4              |
| 4-Bromofluorobenzene                    | 460-00-4             | 2         | %              | 97.7              | 94.7              | 88.7              | 96.6              | 96.5              |

Page : 7 of 11
Work Order : ES2304011

Client : SENVERSA PTY LTD
Project : S20102 Wetherill Park WME



| Sub-Matrix: WATER (Matrix: WATER)                                    |             |        | Sample ID      | MW3               | MW4               | MW6               | QC101             |   |
|----------------------------------------------------------------------|-------------|--------|----------------|-------------------|-------------------|-------------------|-------------------|---|
|                                                                      |             | Sampli | ng date / time | 08-Feb-2023 00:00 | 08-Feb-2023 00:00 | 08-Feb-2023 00:00 | 08-Feb-2023 00:00 |   |
| Compound                                                             | CAS Number  | LOR    | Unit           | ES2304011-006     | ES2304011-007     | ES2304011-008     | ES2304011-009     |   |
|                                                                      |             |        |                | Result            | Result            | Result            | Result            |   |
| EA005P: pH by PC Titrator                                            |             |        |                |                   |                   |                   |                   |   |
| pH Value                                                             |             | 0.01   | pH Unit        | 7.09              | 7.72              | 8.06              |                   |   |
| EA006: Sodium Adsorption Ratio (SAF                                  | (8)         |        |                |                   |                   |                   |                   |   |
| ^ Sodium Adsorption Ratio                                            |             | 0.01   | -              | 37.8              | 21.4              | 6.70              |                   |   |
| EA010P: Conductivity by PC Titrator                                  |             |        |                |                   |                   |                   |                   |   |
| Electrical Conductivity @ 25°C                                       |             | 1      | μS/cm          | 34200             | 19900             | 2310              |                   |   |
| EA016: Calculated TDS (from Electrica                                |             |        |                |                   |                   |                   |                   |   |
| Total Dissolved Solids (Calc.)                                       |             | 1      | mg/L           | 22200             | 12900             | 1500              |                   |   |
| EA065: Total Hardness as CaCO3                                       |             |        | 5              |                   |                   |                   |                   |   |
| Total Hardness as CaCO3                                              |             | 1      | mg/L           | 4730              | 3980              | 586               |                   |   |
|                                                                      |             | •      | mg/L           | 4700              | 0000              | 000               |                   |   |
| ED037P: Alkalinity by PC Titrator  Hydroxide Alkalinity as CaCO3     | DMO 040 004 | 1      | ma/l           | <1                | <1                | <1                |                   |   |
| Carbonate Alkalinity as CaCO3                                        | DMO-210-001 | 1      | mg/L<br>mg/L   | <1                | <1                | <1                |                   |   |
| Bicarbonate Alkalinity as CaCO3                                      | 3812-32-6   | 1      | mg/L           | 222               | 1110              | 834               |                   |   |
| Total Alkalinity as CaCO3                                            | 71-52-3     | 1      | mg/L           | 222               | 1110              | 834               |                   |   |
|                                                                      |             | ı      | mg/L           | 222               | 1110              | 034               |                   |   |
| ED041G: Sulfate (Turbidimetric) as SO Sulfate as SO4 - Turbidimetric |             | 1      | ma/l           | 907               | 280               | 44                | I                 | I |
|                                                                      | 14808-79-8  | 1      | mg/L           | 907               | 200               | 44                |                   |   |
| ED045G: Chloride by Discrete Analyse                                 |             | •      |                |                   |                   |                   | I                 | I |
| Chloride                                                             | 16887-00-6  | 1      | mg/L           | 11900             | 6680              | 341               |                   |   |
| ED093F: Dissolved Major Cations                                      |             |        |                |                   |                   |                   |                   |   |
| Calcium                                                              | 7440-70-2   | 1      | mg/L           | 181               | 299               | 50                |                   |   |
| Magnesium                                                            | 7439-95-4   | 1      | mg/L           | 1040              | 786               | 112               |                   |   |
| Sodium                                                               | 7440-23-5   | 1      | mg/L           | 5980              | 3100              | 373               |                   |   |
| Potassium                                                            | 7440-09-7   | 1      | mg/L           | 14                | 35                | 6                 |                   |   |
| EG005(ED093)F: Dissolved Metals by I                                 | CP-AES      |        |                |                   |                   |                   |                   |   |
| Iron                                                                 | 7439-89-6   | 0.05   | mg/L           | 5.05              | 1.22              | <0.05             | 5.15              |   |
| Manganese                                                            | 7439-96-5   | 0.01   | mg/L           | 5.99              | 5.45              | 0.04              | 6.15              |   |
| EG020F: Dissolved Metals by ICP-MS                                   |             |        |                |                   |                   |                   |                   |   |
| Arsenic                                                              | 7440-38-2   | 0.001  | mg/L           | <0.010            | 0.005             | <0.001            | <0.010            |   |
| Cadmium                                                              | 7440-43-9   | 0.0001 | mg/L           | <0.0010           | <0.0001           | <0.0001           | <0.0010           |   |
| Chromium                                                             | 7440-47-3   | 0.001  | mg/L           | <0.010            | <0.001            | <0.001            | <0.010            |   |
| Copper                                                               | 7440-50-8   | 0.001  | mg/L           | <0.010            | 0.005             | 0.003             | <0.010            |   |
| Lead                                                                 | 7439-92-1   | 0.001  | mg/L           | <0.010            | <0.001            | <0.001            | <0.010            |   |
| Nickel                                                               | 7440-02-0   | 0.001  | mg/L           | 0.191             | 0.021             | <0.001            | 0.167             |   |

Page : 8 of 11 Work Order : ES2304011

Client : SENVERSA PTY LTD
Project : S20102 Wetherill Park WME



| Sub-Matrix: WATER (Matrix: WATER)                                  |                     |        | Sample ID      | MW3               | MW4               | MW6               | QC101             |  |
|--------------------------------------------------------------------|---------------------|--------|----------------|-------------------|-------------------|-------------------|-------------------|--|
|                                                                    |                     | Sampli | ng date / time | 08-Feb-2023 00:00 | 08-Feb-2023 00:00 | 08-Feb-2023 00:00 | 08-Feb-2023 00:00 |  |
| Compound                                                           | CAS Number          | LOR    | Unit           | ES2304011-006     | ES2304011-007     | ES2304011-008     | ES2304011-009     |  |
| ·                                                                  |                     |        |                | Result            | Result            | Result            | Result            |  |
| EG020F: Dissolved Metals by ICP-M                                  | S - Continued       |        |                |                   |                   |                   |                   |  |
| Zinc                                                               | 7440-66-6           | 0.005  | mg/L           | 0.225             | <0.005            | <0.005            | 0.196             |  |
| EG035F: Dissolved Mercury by FIMS                                  | 3                   |        |                |                   |                   |                   |                   |  |
| Mercury                                                            | 7439-97-6           | 0.0001 | mg/L           | <0.0001           | <0.0001           | <0.0001           | <0.0001           |  |
| EK040P: Fluoride by PC Titrator                                    |                     |        |                |                   |                   |                   |                   |  |
| Fluoride                                                           | 16984-48-8          | 0.1    | mg/L           | 1.2               | 1.6               | 1.8               |                   |  |
| EK055G: Ammonia as N by Discrete                                   | Analyser            |        |                |                   |                   |                   |                   |  |
| Ammonia as N                                                       | 7664-41-7           | 0.01   | mg/L           | 0.22              | 0.34              | 0.02              |                   |  |
| EK057G: Nitrite as N by Discrete Ar                                |                     |        |                |                   |                   |                   |                   |  |
| Nitrite as N                                                       | 14797-65-0          | 0.01   | mg/L           | <0.01             | <0.01             | 0.25              |                   |  |
| EK058G: Nitrate as N by Discrete A                                 |                     |        | 3              |                   |                   |                   |                   |  |
| Nitrate as N                                                       | 14797-55-8          | 0.01   | mg/L           | <0.01             | 0.01              | 1.00              |                   |  |
|                                                                    |                     |        | mg/L           | -0.01             | 0.01              | 1100              |                   |  |
| EK059G: Nitrite plus Nitrate as N (N<br>Nitrite + Nitrate as N     | OX) by Discrete Ana | 0.01   | mg/L           | <0.01             | 0.01              | 1.25              | 0.02              |  |
|                                                                    | D'anni a Anni anni  | 0.01   | IIIg/L         | 40.01             | 0.01              | 1.20              | 0.02              |  |
| EK061G: Total Kjeldahl Nitrogen By<br>Total Kjeldahl Nitrogen as N | Discrete Analyser   | 0.1    | mg/L           | 1.0               | 1.1               | 0.4               | 1.3               |  |
|                                                                    |                     |        | IIIg/L         | 1.0               | 1.1               | 0.4               | 1.3               |  |
| EK062G: Total Nitrogen as N (TKN +                                 |                     |        |                | 4.0               | 4.4               | 10                | 10                |  |
| ^ Total Nitrogen as N                                              |                     | 0.1    | mg/L           | 1.0               | 1.1               | 1.6               | 1.3               |  |
| EK067G: Total Phosphorus as P by                                   | Discrete Analyser   | 0.04   |                |                   |                   |                   |                   |  |
| Total Phosphorus as P                                              |                     | 0.01   | mg/L           | 0.12              | 0.09              | 0.09              | 0.10              |  |
| EK071G: Reactive Phosphorus as P                                   |                     |        |                |                   |                   |                   |                   |  |
| Reactive Phosphorus as P                                           | 14265-44-2          | 0.01   | mg/L           | <0.01             | <0.01             | <0.01             |                   |  |
| EN055: Ionic Balance                                               |                     |        |                |                   |                   |                   |                   |  |
| Ø Total Anions                                                     |                     | 0.01   | meq/L          | 359               | 216               | 27.2              |                   |  |
| ø Total Cations                                                    |                     | 0.01   | meq/L          | 355               | 215               | 28.1              |                   |  |
| Ø Ionic Balance                                                    |                     | 0.01   | %              | 0.55              | 0.25              | 1.61              |                   |  |
| EP075(SIM)A: Phenolic Compounds                                    |                     |        |                |                   |                   |                   |                   |  |
| Phenol                                                             | 108-95-2            | 1.0    | μg/L           | <1.0              | <1.0              | <1.0              |                   |  |
| 2-Chlorophenol                                                     | 95-57-8             | 1.0    | μg/L           | <1.0              | <1.0              | <1.0              |                   |  |
| 2-Methylphenol                                                     | 95-48-7             | 1.0    | μg/L           | <1.0              | <1.0              | <1.0              |                   |  |
| 3- & 4-Methylphenol                                                | 1319-77-3           | 2.0    | μg/L           | <2.0              | <2.0              | <2.0              |                   |  |
| 2-Nitrophenol                                                      | 88-75-5             | 1.0    | μg/L           | <1.0              | <1.0              | <1.0              |                   |  |
| 2.4-Dimethylphenol                                                 | 105-67-9            | 1.0    | μg/L           | <1.0              | <1.0              | <1.0              |                   |  |
| 2.4-Dichlorophenol                                                 | 120-83-2            | 1.0    | μg/L           | <1.0              | <1.0              | <1.0              |                   |  |

Page : 9 of 11 Work Order : ES2304011

Client : SENVERSA PTY LTD
Project : S20102 Wetherill Park WME



| Sub-Matrix: WATER (Matrix: WATER)      |                     |            | Sample ID      | MW3               | MW4               | MW6               | QC101             |  |
|----------------------------------------|---------------------|------------|----------------|-------------------|-------------------|-------------------|-------------------|--|
|                                        |                     | Sampli     | ng date / time | 08-Feb-2023 00:00 | 08-Feb-2023 00:00 | 08-Feb-2023 00:00 | 08-Feb-2023 00:00 |  |
| Compound                               | CAS Number          | LOR        | Unit           | ES2304011-006     | ES2304011-007     | ES2304011-008     | ES2304011-009     |  |
|                                        |                     |            |                | Result            | Result            | Result            | Result            |  |
| EP075(SIM)A: Phenolic Compounds        | s - Continued       |            |                |                   |                   |                   |                   |  |
| 2.6-Dichlorophenol                     | 87-65-0             | 1.0        | μg/L           | <1.0              | <1.0              | <1.0              |                   |  |
| 4-Chloro-3-methylphenol                | 59-50-7             | 1.0        | μg/L           | <1.0              | <1.0              | <1.0              |                   |  |
| 2.4.6-Trichlorophenol                  | 88-06-2             | 1.0        | μg/L           | <1.0              | <1.0              | <1.0              |                   |  |
| 2.4.5-Trichlorophenol                  | 95-95-4             | 1.0        | μg/L           | <1.0              | <1.0              | <1.0              |                   |  |
| Pentachlorophenol                      | 87-86-5             | 2.0        | μg/L           | <2.0              | <2.0              | <2.0              |                   |  |
| EP075(SIM)B: Polynuclear Aromatic      | c Hydrocarbons      |            |                |                   |                   |                   |                   |  |
| Naphthalene                            | 91-20-3             | 1.0        | μg/L           | <1.0              | <1.0              | <1.0              | <1.0              |  |
| Acenaphthylene                         | 208-96-8            | 1.0        | μg/L           | <1.0              | <1.0              | <1.0              | <1.0              |  |
| Acenaphthene                           | 83-32-9             | 1.0        | μg/L           | <1.0              | <1.0              | <1.0              | <1.0              |  |
| Fluorene                               | 86-73-7             | 1.0        | μg/L           | <1.0              | <1.0              | <1.0              | <1.0              |  |
| Phenanthrene                           | 85-01-8             | 1.0        | μg/L           | <1.0              | <1.0              | <1.0              | <1.0              |  |
| Anthracene                             | 120-12-7            | 1.0        | μg/L           | <1.0              | <1.0              | <1.0              | <1.0              |  |
| Fluoranthene                           | 206-44-0            | 1.0        | μg/L           | <1.0              | <1.0              | <1.0              | <1.0              |  |
| Pyrene                                 | 129-00-0            | 1.0        | μg/L           | <1.0              | <1.0              | <1.0              | <1.0              |  |
| Benz(a)anthracene                      | 56-55-3             | 1.0        | μg/L           | <1.0              | <1.0              | <1.0              | <1.0              |  |
| Chrysene                               | 218-01-9            | 1.0        | μg/L           | <1.0              | <1.0              | <1.0              | <1.0              |  |
| Benzo(b+j)fluoranthene                 | 205-99-2 205-82-3   | 1.0        | μg/L           | <1.0              | <1.0              | <1.0              | <1.0              |  |
| Benzo(k)fluoranthene                   | 207-08-9            | 1.0        | μg/L           | <1.0              | <1.0              | <1.0              | <1.0              |  |
| Benzo(a)pyrene                         | 50-32-8             | 0.5        | μg/L           | <0.5              | <0.5              | <0.5              | <0.5              |  |
| Indeno(1.2.3.cd)pyrene                 | 193-39-5            | 1.0        | μg/L           | <1.0              | <1.0              | <1.0              | <1.0              |  |
| Dibenz(a.h)anthracene                  | 53-70-3             | 1.0        | μg/L           | <1.0              | <1.0              | <1.0              | <1.0              |  |
| Benzo(g.h.i)perylene                   | 191-24-2            | 1.0        | μg/L           | <1.0              | <1.0              | <1.0              | <1.0              |  |
| ^ Sum of polycyclic aromatic hydrocarb | oons                | 0.5        | μg/L           | <0.5              | <0.5              | <0.5              | <0.5              |  |
| ^ Benzo(a)pyrene TEQ (zero)            |                     | 0.5        | μg/L           | <0.5              | <0.5              | <0.5              | <0.5              |  |
| EP080/071: Total Petroleum Hydroc      | arbons              |            |                |                   |                   |                   |                   |  |
| C6 - C9 Fraction                       |                     | 20         | μg/L           | <20               | <20               | <20               | <20               |  |
| C10 - C14 Fraction                     |                     | 50         | μg/L           | <50               | <50               | <50               | <50               |  |
| C15 - C28 Fraction                     |                     | 100        | μg/L           | <100              | <100              | <100              | <100              |  |
| C29 - C36 Fraction                     |                     | 50         | μg/L           | <50               | <50               | <50               | <50               |  |
| ^ C10 - C36 Fraction (sum)             |                     | 50         | μg/L           | <50               | <50               | <50               | <50               |  |
| EP080/071: Total Recoverable Hydr      | ocarbons - NEPM 201 | 3 Fraction | ns             |                   |                   |                   |                   |  |
| C6 - C10 Fraction                      | C6_C10              | 20         | μg/L           | <20               | <20               | <20               | <20               |  |
| ^ C6 - C10 Fraction minus BTEX (F1)    | C6_C10-BTEX         | 20         | μg/L           | <20               | <20               | <20               | <20               |  |

Page : 10 of 11 Work Order : ES2304011

Client : SENVERSA PTY LTD
Project : S20102 Wetherill Park WME



| Sub-Matrix: WATER (Matrix: WATER)               |                   |            | Sample ID      | MW3               | MW4               | MW6               | QC101             |  |
|-------------------------------------------------|-------------------|------------|----------------|-------------------|-------------------|-------------------|-------------------|--|
|                                                 |                   | Sampli     | ng date / time | 08-Feb-2023 00:00 | 08-Feb-2023 00:00 | 08-Feb-2023 00:00 | 08-Feb-2023 00:00 |  |
| Compound                                        | CAS Number        | LOR        | Unit           | ES2304011-006     | ES2304011-007     | ES2304011-008     | ES2304011-009     |  |
|                                                 |                   |            |                | Result            | Result            | Result            | Result            |  |
| EP080/071: Total Recoverable Hydroca            | arbons - NEPM 201 | 3 Fraction | ns - Continued |                   |                   |                   |                   |  |
| >C10 - C16 Fraction                             |                   | 100        | μg/L           | <100              | <100              | <100              | <100              |  |
| >C16 - C34 Fraction                             |                   | 100        | μg/L           | <100              | <100              | <100              | <100              |  |
| >C34 - C40 Fraction                             |                   | 100        | μg/L           | <100              | <100              | <100              | <100              |  |
| ^ >C10 - C40 Fraction (sum)                     |                   | 100        | μg/L           | <100              | <100              | <100              | <100              |  |
| ^ >C10 - C16 Fraction minus Naphthalene<br>(F2) |                   | 100        | μg/L           | <100              | <100              | <100              | <100              |  |
| EP080: BTEXN                                    |                   |            |                |                   |                   |                   |                   |  |
| Benzene                                         | 71-43-2           | 1          | μg/L           | <1                | <1                | <1                | <1                |  |
| Toluene                                         | 108-88-3          | 2          | μg/L           | <2                | <2                | <2                | <2                |  |
| Ethylbenzene                                    | 100-41-4          | 2          | μg/L           | <2                | <2                | <2                | <2                |  |
| meta- & para-Xylene                             | 108-38-3 106-42-3 | 2          | μg/L           | <2                | <2                | <2                | <2                |  |
| ortho-Xylene                                    | 95-47-6           | 2          | μg/L           | <2                | <2                | <2                | <2                |  |
| ^ Total Xylenes                                 |                   | 2          | μg/L           | <2                | <2                | <2                | <2                |  |
| ^ Sum of BTEX                                   |                   | 1          | μg/L           | <1                | <1                | <1                | <1                |  |
| Naphthalene                                     | 91-20-3           | 5          | μg/L           | <5                | <5                | <5                | <5                |  |
| EP075(SIM)S: Phenolic Compound Su               | rrogates          |            |                |                   |                   |                   |                   |  |
| Phenol-d6                                       | 13127-88-3        | 1.0        | %              | 32.6              | 29.6              | 31.5              | 27.0              |  |
| 2-Chlorophenol-D4                               | 93951-73-6        | 1.0        | %              | 62.2              | 60.2              | 63.8              | 52.4              |  |
| 2.4.6-Tribromophenol                            | 118-79-6          | 1.0        | %              | 84.6              | 78.9              | 70.0              | 62.2              |  |
| EP075(SIM)T: PAH Surrogates                     |                   |            |                |                   |                   |                   |                   |  |
| 2-Fluorobiphenyl                                | 321-60-8          | 1.0        | %              | 77.8              | 77.0              | 81.0              | 66.8              |  |
| Anthracene-d10                                  | 1719-06-8         | 1.0        | %              | 109               | 102               | 104               | 84.4              |  |
| 4-Terphenyl-d14                                 | 1718-51-0         | 1.0        | %              | 94.4              | 88.4              | 87.4              | 70.8              |  |
| EP080S: TPH(V)/BTEX Surrogates                  |                   |            |                |                   |                   |                   |                   |  |
| 1.2-Dichloroethane-D4                           | 17060-07-0        | 2          | %              | 99.0              | 102               | 95.4              | 98.2              |  |
| Toluene-D8                                      | 2037-26-5         | 2          | %              | 104               | 100.0             | 95.8              | 101               |  |
| 4-Bromofluorobenzene                            | 460-00-4          | 2          | %              | 98.9              | 95.0              | 92.1              | 95.6              |  |

Page : 11 of 11 Work Order : ES2304011

Client : SENVERSA PTY LTD
Project : S20102 Wetherill Park WME

# ALS

# Surrogate Control Limits

| Sub-Matrix: WATER                         | Recovery Limits (%) |     |      |  |  |
|-------------------------------------------|---------------------|-----|------|--|--|
| Compound                                  | CAS Number          | Low | High |  |  |
| EP075(SIM)S: Phenolic Compound Surrogates |                     |     |      |  |  |
| Phenol-d6                                 | 13127-88-3          | 10  | 44   |  |  |
| 2-Chlorophenol-D4                         | 93951-73-6          | 14  | 94   |  |  |
| 2.4.6-Tribromophenol                      | 118-79-6            | 17  | 125  |  |  |
| EP075(SIM)T: PAH Surrogates               |                     |     |      |  |  |
| 2-Fluorobiphenyl                          | 321-60-8            | 20  | 104  |  |  |
| Anthracene-d10                            | 1719-06-8           | 27  | 113  |  |  |
| 4-Terphenyl-d14                           | 1718-51-0           | 32  | 112  |  |  |
| EP080S: TPH(V)/BTEX Surrogates            |                     |     |      |  |  |
| 1.2-Dichloroethane-D4                     | 17060-07-0          | 71  | 137  |  |  |
| Toluene-D8                                | 2037-26-5           | 79  | 131  |  |  |
| 4-Bromofluorobenzene                      | 460-00-4            | 70  | 128  |  |  |



# QA/QC Compliance Assessment to assist with Quality Review

Work Order : **ES2304011** Page : 1 of 11

Client : SENVERSA PTY LTD Laboratory : Environmental Division Sydney

Contact : EMMA WALSH Telephone : +61 2 8784 8555

Project : S20102 Wetherill Park WME Date Samples Received : 08-Feb-2023

Site: ---Issue Date: 14-Feb-2023Sampler: Bec ChappleNo. of samples received: 9

Order number : --- No. of samples analysed : 9

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

#### **Summary of Outliers**

#### **Outliers: Quality Control Samples**

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- NO Duplicate outliers occur.
- NO Laboratory Control outliers occur.
- Matrix Spike outliers exist please see following pages for full details.
- For all regular sample matrices, NO surrogate recovery outliers occur.

#### **Outliers: Analysis Holding Time Compliance**

• NO Analysis Holding Time Outliers exist.

#### **Outliers: Frequency of Quality Control Samples**

Quality Control Sample Frequency Outliers exist - please see following pages for full details.

Page : 2 of 11 Work Order : ES2304011

 Client
 : SENVERSA PTY LTD

 Project
 · S20102 Wetherill Park WME

#### **Outliers: Quality Control Samples**

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

#### Matrix: WATER

| Compound Group Name                        | Laboratory Sample ID | Client Sample ID | Analyte      | CAS Number | Data       | Limits | Comment                          |
|--------------------------------------------|----------------------|------------------|--------------|------------|------------|--------|----------------------------------|
| Matrix Spike (MS) Recoveries               |                      |                  |              |            |            |        |                                  |
| EG005(ED093)F: Dissolved Metals by ICP-AES | ES2304011007         | MW4              | Manganese    | 7439-96-5  | Not        |        | MS recovery not determined,      |
|                                            |                      |                  |              |            | Determined |        | background level greater than or |
|                                            |                      |                  |              |            |            |        | equal to 4x spike level.         |
| EK057G: Nitrite as N by Discrete Analyser  | ES2303855001         | Anonymous        | Nitrite as N | 14797-65-0 | Not        |        | MS recovery not determined,      |
|                                            |                      |                  |              |            | Determined |        | background level greater than or |
|                                            |                      |                  |              |            |            |        | equal to 4x spike level.         |

#### **Outliers: Frequency of Quality Control Samples**

#### Matrix: WATER

| Quality Control Sample Type | C  | Count   |        | € (%)    | Quality Control Specification  |
|-----------------------------|----|---------|--------|----------|--------------------------------|
| Method                      | QC | Regular | Actual | Expected |                                |
| _aboratory Duplicates (DUP) |    |         |        |          |                                |
| PAH/Phenols (GC/MS - SIM)   | 0  | 7       | 0.00   | 10.00    | NEPM 2013 B3 & ALS QC Standard |
| TRH - Semivolatile Fraction | 0  | 7       | 0.00   | 10.00    | NEPM 2013 B3 & ALS QC Standard |
| Matrix Spikes (MS)          |    |         |        |          |                                |
| Dissolved Metals by ICP-AES | 1  | 24      | 4.17   | 5.00     | NEPM 2013 B3 & ALS QC Standard |
| PAH/Phenols (GC/MS - SIM)   | 0  | 7       | 0.00   | 5.00     | NEPM 2013 B3 & ALS QC Standard |
| RH - Semivolatile Fraction  | 0  | 7       | 0.00   | 5.00     | NEPM 2013 B3 & ALS QC Standard |

### **Analysis Holding Time Compliance**

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

#### Matrix: WATER

| Evaluation: 🗴 | <ul> <li>Holding time breach</li> </ul> | n ; ✓ = Within | holding time. |
|---------------|-----------------------------------------|----------------|---------------|
|---------------|-----------------------------------------|----------------|---------------|

| Method                                   |      |             | Ex             | traction / Preparation |            | Analysis      |                  |            |  |
|------------------------------------------|------|-------------|----------------|------------------------|------------|---------------|------------------|------------|--|
| Container / Client Sample ID(s)          |      |             | Date extracted | Due for extraction     | Evaluation | Date analysed | Due for analysis | Evaluation |  |
| EA005P: pH by PC Titrator                |      |             |                |                        |            |               |                  |            |  |
| Clear Plastic Bottle - Natural (EA005-P) |      |             |                |                        |            |               |                  |            |  |
| MW1,                                     | MW2, | 08-Feb-2023 |                |                        |            | 08-Feb-2023   | 08-Feb-2023      | ✓          |  |
| MW3,                                     | MW4, |             |                |                        |            |               |                  |            |  |
| MW6                                      |      |             |                |                        |            |               |                  |            |  |

Page : 3 of 11 Work Order : ES2304011

 Client
 : SENVERSA PTY LTD

 Project
 · S20102 Wetherill Park WME



Matrix: WATER Evaluation: × = Holding time breach ; ✓ = Within holding time. Method Sample Date Extraction / Preparation Analysis Container / Client Sample ID(s) Date extracted Due for extraction Evaluation Date analysed Due for analysis Evaluation EA006: Sodium Adsorption Ratio (SAR) Clear Plastic Bottle - Nitric Acid; Filtered (ED093F) 08-Feb-2023 08-Feb-2023 08-Mar-2023 MW1, MW2. MW3. MW4, MW6 EA010P: Conductivity by PC Titrator Clear Plastic Bottle - Natural (EA010-P) MW1. MW2. 08-Feb-2023 08-Feb-2023 08-Mar-2023 MW3. MW4. MW6 EA065: Total Hardness as CaCO3 Clear Plastic Bottle - Nitric Acid; Filtered (ED093F) 08-Feb-2023 08-Feb-2023 08-Mar-2023 MW1, MW2, MW3. MW4, MW6 ED037P: Alkalinity by PC Titrator Clear Plastic Bottle - Natural (ED037-P) MW1, MW2, 08-Feb-2023 08-Feb-2023 22-Feb-2023 MW3, MW4, MW6 ED041G: Sulfate (Turbidimetric) as SO4 2- by DA Clear Plastic Bottle - Natural (ED041G) 08-Feb-2023 08-Feb-2023 08-Mar-2023 MW1. MW2, MW3. MW4. MW6 ED045G: Chloride by Discrete Analyser Clear Plastic Bottle - Natural (ED045G) MW1, MW2, 08-Feb-2023 08-Feb-2023 08-Mar-2023 MW3, MW4, MW6 ED093F: Dissolved Major Cations Clear Plastic Bottle - Nitric Acid; Filtered (ED093F) 08-Feb-2023 08-Feb-2023 08-Mar-2023 MW1, MW2, MW3. MW4, MW6 EG005(ED093)F: Dissolved Metals by ICP-AES Clear Plastic Bottle - Nitric Acid; Filtered (EG005F) 07-Aug-2023 QC301, MW1, 08-Feb-2023 09-Feb-2023 MW2. MW3. MW4. MW6. QC101

Page : 4 of 11 Work Order : ES2304011

MW4

QC101

Clear Plastic Bottle - Sulfuric Acid (EK061G)

 Client
 : SENVERSA PTY LTD

 Project
 · S20102 Wetherill Park WME



Project Matrix: WATER Evaluation: × = Holding time breach ; ✓ = Within holding time. Method Sample Date Extraction / Preparation Analysis Container / Client Sample ID(s) Date extracted Due for extraction Evaluation Date analysed Due for analysis Evaluation EG020F: Dissolved Metals by ICP-MS Clear Plastic Bottle - Nitric Acid; Filtered (EG020A-F) 08-Feb-2023 08-Feb-2023 07-Aug-2023 QC301, MW1, MW2. MW3. MW4. MW6, QC101 EG035F: Dissolved Mercury by FIMS Clear Plastic Bottle - Nitric Acid; Filtered (EG035F) 08-Feb-2023 09-Feb-2023 08-Mar-2023 QC301. MW1. MW2. MW3, MW4. MW6, QC101 EK040P: Fluoride by PC Titrator Clear Plastic Bottle - Natural (EK040P) MW1, MW2, 08-Feb-2023 08-Feb-2023 08-Mar-2023 MW3, MW4, MW6 EK055G: Ammonia as N by Discrete Analyser Clear Plastic Bottle - Sulfuric Acid (EK055G) 08-Feb-2023 13-Feb-2023 08-Mar-2023 MW1. MW2, MW3, MW4, MW6 EK057G: Nitrite as N by Discrete Analyser Clear Plastic Bottle - Natural (EK057G) 10-Feb-2023 MW1. MW2, 08-Feb-2023 08-Feb-2023 MW3. MW4. MW6 EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analyser Clear Plastic Bottle - Sulfuric Acid (EK059G) 08-Mar-2023 08-Feb-2023 13-Feb-2023 QC301, MW1, MW2, MW3, MW4. MW6, QC101 EK061G: Total Kjeldahl Nitrogen By Discrete Analyser Clear Plastic Bottle - Sulfuric Acid (EK061G) 08-Feb-2023 09-Feb-2023 08-Mar-2023 09-Feb-2023 08-Mar-2023 MW6 1 Clear Plastic Bottle - Sulfuric Acid (EK061G) QC301, MW1, 08-Feb-2023 09-Feb-2023 08-Mar-2023 10-Feb-2023 08-Mar-2023 MW2. MW3,

08-Feb-2023

10-Feb-2023

08-Mar-2023

11-Feb-2023

08-Mar-2023

Page : 5 of 11 Work Order : ES2304011

QC101

Client : SENVERSA PTY LTD
Project : S20102 Wetherill Park WME



Matrix: WATER Evaluation: × = Holding time breach ; ✓ = Within holding time. Method Sample Date Extraction / Preparation Analysis Container / Client Sample ID(s) Date extracted Due for extraction Evaluation Date analysed Due for analysis Evaluation EK067G: Total Phosphorus as P by Discrete Analyser Clear Plastic Bottle - Sulfuric Acid (EK067G) 08-Feb-2023 09-Feb-2023 08-Mar-2023 10-Feb-2023 08-Mar-2023 QC301, MW1, MW2. MW3. MW4. MW6 Clear Plastic Bottle - Sulfuric Acid (EK067G) 08-Feb-2023 10-Feb-2023 08-Mar-2023 11-Feb-2023 08-Mar-2023 EK071G: Reactive Phosphorus as P by discrete analyser Clear Plastic Bottle - Natural (EK071G) 08-Feb-2023 08-Feb-2023 10-Feb-2023 MW1. MW2. MW3. MW4. MW6 EP075(SIM)A: Phenolic Compounds Amber Glass Bottle - Unpreserved (EP075(SIM)) 13-Feb-2023 MW1, MW2, 08-Feb-2023 10-Feb-2023 15-Feb-2023 22-Mar-2023 MW3, MW4, MW6 EP075(SIM)B: Polynuclear Aromatic Hydrocarbons Amber Glass Bottle - Unpreserved (EP075(SIM)) MW1, 08-Feb-2023 10-Feb-2023 15-Feb-2023 13-Feb-2023 22-Mar-2023 QC301, MW2, MW3, MW4. MW6, QC101 EP080/071: Total Petroleum Hydrocarbons Amber Glass Bottle - Unpreserved (EP071) 08-Feb-2023 15-Feb-2023 13-Feb-2023 22-Mar-2023 QC301, MW1, 10-Feb-2023 MW2. MW3. MW4. MW6, QC101 Amber VOC Vial - Sulfuric Acid (EP080) 20-Feb-2023 20-Feb-2023 QC401 06-Feb-2023 09-Feb-2023 09-Feb-2023 Amber VOC Vial - Sulfuric Acid (EP080) QC301. MW1. 08-Feb-2023 09-Feb-2023 22-Feb-2023 09-Feb-2023 22-Feb-2023 MW2. MW3. MW4. MW6.

Page : 6 of 11 Work Order : ES2304011

Client : SENVERSA PTY LTD
Project : S20102 Wetherill Park WME



Matrix: **WATER**Evaluation: ▼ = Holding time breach; ✓ = Within holding time.

| Method                                 |                            | Sample Date | E              | xtraction / Preparation |            | Analysis      |                  |            |  |
|----------------------------------------|----------------------------|-------------|----------------|-------------------------|------------|---------------|------------------|------------|--|
| Container / Client Sample ID(s)        |                            | ·           | Date extracted | Due for extraction      | Evaluation | Date analysed | Due for analysis | Evaluation |  |
| EP080/071: Total Recoverable Hydrocarl | bons - NEPM 2013 Fractions |             |                |                         |            |               |                  |            |  |
| Amber Glass Bottle - Unpreserved (EP07 | 1)                         |             |                |                         |            |               |                  |            |  |
| QC301,                                 | MW1,                       | 08-Feb-2023 | 10-Feb-2023    | 15-Feb-2023             | ✓          | 13-Feb-2023   | 22-Mar-2023      | ✓          |  |
| MW2,                                   | MW3,                       |             |                |                         |            |               |                  |            |  |
| MW4,                                   | MW6,                       |             |                |                         |            |               |                  |            |  |
| QC101                                  |                            |             |                |                         |            |               |                  |            |  |
| Amber VOC Vial - Sulfuric Acid (EP080) |                            |             |                |                         |            |               |                  |            |  |
| QC401                                  |                            | 06-Feb-2023 | 09-Feb-2023    | 20-Feb-2023             | ✓          | 09-Feb-2023   | 20-Feb-2023      | ✓          |  |
| Amber VOC Vial - Sulfuric Acid (EP080) |                            |             |                |                         |            |               |                  |            |  |
| QC301,                                 | MW1,                       | 08-Feb-2023 | 09-Feb-2023    | 22-Feb-2023             | ✓          | 09-Feb-2023   | 22-Feb-2023      | ✓          |  |
| MW2,                                   | MW3,                       |             |                |                         |            |               |                  |            |  |
| MW4,                                   | MW6,                       |             |                |                         |            |               |                  |            |  |
| QC101                                  |                            |             |                |                         |            |               |                  |            |  |
| EP080: BTEXN                           |                            |             |                |                         |            |               |                  |            |  |
| Amber VOC Vial - Sulfuric Acid (EP080) |                            |             |                |                         |            |               |                  |            |  |
| QC401,                                 | QC501                      | 06-Feb-2023 | 09-Feb-2023    | 20-Feb-2023             | ✓          | 09-Feb-2023   | 20-Feb-2023      | ✓          |  |
| Amber VOC Vial - Sulfuric Acid (EP080) |                            |             |                |                         |            |               |                  |            |  |
| QC301,                                 | MW1,                       | 08-Feb-2023 | 09-Feb-2023    | 22-Feb-2023             | ✓          | 09-Feb-2023   | 22-Feb-2023      | ✓          |  |
| MW2,                                   | MW3,                       |             |                |                         |            |               |                  |            |  |
| MW4,                                   | MW6,                       |             |                |                         |            |               |                  |            |  |
| QC101                                  |                            |             |                |                         |            |               |                  |            |  |

Page : 7 of 11 Work Order : ES2304011

Client : SENVERSA PTY LTD
Project : S20102 Wetherill Park WME



# **Quality Control Parameter Frequency Compliance**

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

to expected rate. A finding of breaking in provided in the duffinary of dutiers.

| Matrix: WATER                                          |            |      |         | Evaluation | on: × = Quality Co | not within specification ; $\checkmark$ = Quality Control frequency within specification. |                                |
|--------------------------------------------------------|------------|------|---------|------------|--------------------|-------------------------------------------------------------------------------------------|--------------------------------|
| Quality Control Sample Type                            |            | Co   | ount    |            | Rate (%)           |                                                                                           | Quality Control Specification  |
| Analytical Methods                                     | Method     | OC . | Regular | Actual     | Expected           | Evaluation                                                                                |                                |
| Laboratory Duplicates (DUP)                            |            |      |         |            |                    |                                                                                           |                                |
| Alkalinity by Auto Titrator                            | ED037-P    | 2    | 14      | 14.29      | 10.00              | ✓                                                                                         | NEPM 2013 B3 & ALS QC Standard |
| Ammonia as N by Discrete analyser                      | EK055G     | 3    | 21      | 14.29      | 10.00              | ✓                                                                                         | NEPM 2013 B3 & ALS QC Standard |
| Chloride by Discrete Analyser                          | ED045G     | 2    | 20      | 10.00      | 10.00              | ✓                                                                                         | NEPM 2013 B3 & ALS QC Standard |
| Conductivity by Auto Titrator                          | EA010-P    | 5    | 43      | 11.63      | 10.00              | ✓                                                                                         | NEPM 2013 B3 & ALS QC Standard |
| Dissolved Mercury by FIMS                              | EG035F     | 1    | 8       | 12.50      | 10.00              | ✓                                                                                         | NEPM 2013 B3 & ALS QC Standard |
| Dissolved Metals by ICP-AES                            | EG005F     | 3    | 24      | 12.50      | 10.00              | ✓                                                                                         | NEPM 2013 B3 & ALS QC Standard |
| Dissolved Metals by ICP-MS - Suite A                   | EG020A-F   | 1    | 8       | 12.50      | 10.00              | ✓                                                                                         | NEPM 2013 B3 & ALS QC Standard |
| Fluoride by Auto Titrator                              | EK040P     | 2    | 14      | 14.29      | 10.00              | ✓                                                                                         | NEPM 2013 B3 & ALS QC Standard |
| Major Cations - Dissolved                              | ED093F     | 3    | 23      | 13.04      | 10.00              | ✓                                                                                         | NEPM 2013 B3 & ALS QC Standard |
| Nitrite and Nitrate as N (NOx) by Discrete Analyser    | EK059G     | 4    | 34      | 11.76      | 10.00              | ✓                                                                                         | NEPM 2013 B3 & ALS QC Standard |
| Nitrite as N by Discrete Analyser                      | EK057G     | 2    | 10      | 20.00      | 10.00              | ✓                                                                                         | NEPM 2013 B3 & ALS QC Standard |
| PAH/Phenols (GC/MS - SIM)                              | EP075(SIM) | 0    | 7       | 0.00       | 10.00              | <b>x</b>                                                                                  | NEPM 2013 B3 & ALS QC Standard |
| pH by Auto Titrator                                    | EA005-P    | 2    | 19      | 10.53      | 10.00              | ✓                                                                                         | NEPM 2013 B3 & ALS QC Standard |
| Reactive Phosphorus as P-By Discrete Analyser          | EK071G     | 3    | 22      | 13.64      | 10.00              | ✓                                                                                         | NEPM 2013 B3 & ALS QC Standard |
| Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser | ED041G     | 1    | 8       | 12.50      | 10.00              | ✓                                                                                         | NEPM 2013 B3 & ALS QC Standard |
| Total Kjeldahl Nitrogen as N By Discrete Analyser      | EK061G     | 3    | 22      | 13.64      | 10.00              | ✓                                                                                         | NEPM 2013 B3 & ALS QC Standard |
| Total Phosphorus as P By Discrete Analyser             | EK067G     | 4    | 23      | 17.39      | 10.00              | ✓                                                                                         | NEPM 2013 B3 & ALS QC Standard |
| TRH - Semivolatile Fraction                            | EP071      | 0    | 7       | 0.00       | 10.00              | <b>x</b>                                                                                  | NEPM 2013 B3 & ALS QC Standard |
| TRH Volatiles/BTEX                                     | EP080      | 2    | 20      | 10.00      | 10.00              | ✓                                                                                         | NEPM 2013 B3 & ALS QC Standard |
| Laboratory Control Samples (LCS)                       |            |      |         |            |                    |                                                                                           |                                |
| Alkalinity by Auto Titrator                            | ED037-P    | 2    | 14      | 14.29      | 10.00              | ✓                                                                                         | NEPM 2013 B3 & ALS QC Standard |
| Ammonia as N by Discrete analyser                      | EK055G     | 2    | 21      | 9.52       | 5.00               | ✓                                                                                         | NEPM 2013 B3 & ALS QC Standard |
| Chloride by Discrete Analyser                          | ED045G     | 2    | 20      | 10.00      | 10.00              | ✓                                                                                         | NEPM 2013 B3 & ALS QC Standard |
| Conductivity by Auto Titrator                          | EA010-P    | 4    | 43      | 9.30       | 8.33               | ✓                                                                                         | NEPM 2013 B3 & ALS QC Standard |
| Dissolved Mercury by FIMS                              | EG035F     | 1    | 8       | 12.50      | 5.00               | ✓                                                                                         | NEPM 2013 B3 & ALS QC Standard |
| Dissolved Metals by ICP-AES                            | EG005F     | 2    | 24      | 8.33       | 5.00               | ✓                                                                                         | NEPM 2013 B3 & ALS QC Standard |
| Dissolved Metals by ICP-MS - Suite A                   | EG020A-F   | 1    | 8       | 12.50      | 5.00               | ✓                                                                                         | NEPM 2013 B3 & ALS QC Standard |
| Fluoride by Auto Titrator                              | EK040P     | 1    | 14      | 7.14       | 5.00               | ✓                                                                                         | NEPM 2013 B3 & ALS QC Standard |
| Major Cations - Dissolved                              | ED093F     | 2    | 23      | 8.70       | 5.00               | ✓                                                                                         | NEPM 2013 B3 & ALS QC Standard |
| Nitrite and Nitrate as N (NOx) by Discrete Analyser    | EK059G     | 3    | 34      | 8.82       | 5.00               | ✓                                                                                         | NEPM 2013 B3 & ALS QC Standard |
| Nitrite as N by Discrete Analyser                      | EK057G     | 1    | 10      | 10.00      | 5.00               | ✓                                                                                         | NEPM 2013 B3 & ALS QC Standard |
| PAH/Phenols (GC/MS - SIM)                              | EP075(SIM) | 1    | 7       | 14.29      | 5.00               | ✓                                                                                         | NEPM 2013 B3 & ALS QC Standard |
| pH by Auto Titrator                                    | EA005-P    | 2    | 19      | 10.53      | 10.00              | ✓                                                                                         | NEPM 2013 B3 & ALS QC Standard |
| Reactive Phosphorus as P-By Discrete Analyser          | EK071G     | 2    | 22      | 9.09       | 5.00               | ✓                                                                                         | NEPM 2013 B3 & ALS QC Standard |
| Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser | ED041G     | 2    | 8       | 25.00      | 10.00              | ✓                                                                                         | NEPM 2013 B3 & ALS QC Standard |
| Total Kjeldahl Nitrogen as N By Discrete Analyser      | EK061G     | 6    | 22      | 27.27      | 15.00              | ✓                                                                                         | NEPM 2013 B3 & ALS QC Standard |

Page : 8 of 11 Work Order : ES2304011

Client : SENVERSA PTY LTD
Project : S20102 Wetherill Park WME



#### Matrix: WATER

#### Evaluation: ▼ = Quality Control frequency not within specification; ✓ = Quality Control frequency within specification.

| watrix: water                                         |            |    |         | Lvaluatio | ii. • – Quality Co | milior irequericy | not within specification; $\vee$ = Quality Control frequency within specification. |  |
|-------------------------------------------------------|------------|----|---------|-----------|--------------------|-------------------|------------------------------------------------------------------------------------|--|
| Quality Control Sample Type                           |            | С  | ount    |           | Rate (%)           |                   | Quality Control Specification                                                      |  |
| nalytical Methods                                     | Method     | QC | Regular | Actual    | Expected           | Evaluation        |                                                                                    |  |
| aboratory Control Samples (LCS) - Continued           |            |    |         |           |                    |                   |                                                                                    |  |
| otal Phosphorus as P By Discrete Analyser             | EK067G     | 6  | 23      | 26.09     | 15.00              | ✓                 | NEPM 2013 B3 & ALS QC Standard                                                     |  |
| RH - Semivolatile Fraction                            | EP071      | 1  | 7       | 14.29     | 5.00               | ✓                 | NEPM 2013 B3 & ALS QC Standard                                                     |  |
| RH Volatiles/BTEX                                     | EP080      | 1  | 20      | 5.00      | 5.00               | <u>√</u>          | NEPM 2013 B3 & ALS QC Standard                                                     |  |
| Method Blanks (MB)                                    |            |    |         |           |                    |                   |                                                                                    |  |
| mmonia as N by Discrete analyser                      | EK055G     | 2  | 21      | 9.52      | 5.00               | <b>√</b>          | NEPM 2013 B3 & ALS QC Standard                                                     |  |
| hloride by Discrete Analyser                          | ED045G     | 1  | 20      | 5.00      | 5.00               | <u>√</u>          | NEPM 2013 B3 & ALS QC Standard                                                     |  |
| onductivity by Auto Titrator                          | EA010-P    | 1  | 43      | 2.33      | 1.67               | <b>√</b>          | NEPM 2013 B3 & ALS QC Standard                                                     |  |
| issolved Mercury by FIMS                              | EG035F     | 1  | 8       | 12.50     | 5.00               | <u>√</u>          | NEPM 2013 B3 & ALS QC Standard                                                     |  |
| issolved Metals by ICP-AES                            | EG005F     | 2  | 24      | 8.33      | 5.00               | ✓                 | NEPM 2013 B3 & ALS QC Standard                                                     |  |
| issolved Metals by ICP-MS - Suite A                   | EG020A-F   | 1  | 8       | 12.50     | 5.00               | ✓                 | NEPM 2013 B3 & ALS QC Standard                                                     |  |
| luoride by Auto Titrator                              | EK040P     | 1  | 14      | 7.14      | 5.00               | ✓                 | NEPM 2013 B3 & ALS QC Standard                                                     |  |
| fajor Cations - Dissolved                             | ED093F     | 2  | 23      | 8.70      | 5.00               | ✓                 | NEPM 2013 B3 & ALS QC Standard                                                     |  |
| itrite and Nitrate as N (NOx) by Discrete Analyser    | EK059G     | 3  | 34      | 8.82      | 5.00               | ✓                 | NEPM 2013 B3 & ALS QC Standard                                                     |  |
| itrite as N by Discrete Analyser                      | EK057G     | 1  | 10      | 10.00     | 5.00               | ✓                 | NEPM 2013 B3 & ALS QC Standard                                                     |  |
| AH/Phenols (GC/MS - SIM)                              | EP075(SIM) | 1  | 7       | 14.29     | 5.00               | ✓                 | NEPM 2013 B3 & ALS QC Standard                                                     |  |
| eactive Phosphorus as P-By Discrete Analyser          | EK071G     | 2  | 22      | 9.09      | 5.00               | ✓                 | NEPM 2013 B3 & ALS QC Standard                                                     |  |
| ulfate (Turbidimetric) as SO4 2- by Discrete Analyser | ED041G     | 1  | 8       | 12.50     | 5.00               | ✓                 | NEPM 2013 B3 & ALS QC Standard                                                     |  |
| otal Kjeldahl Nitrogen as N By Discrete Analyser      | EK061G     | 2  | 22      | 9.09      | 5.00               | ✓                 | NEPM 2013 B3 & ALS QC Standard                                                     |  |
| otal Phosphorus as P By Discrete Analyser             | EK067G     | 2  | 23      | 8.70      | 5.00               | ✓                 | NEPM 2013 B3 & ALS QC Standard                                                     |  |
| RH - Semivolatile Fraction                            | EP071      | 1  | 7       | 14.29     | 5.00               | ✓                 | NEPM 2013 B3 & ALS QC Standard                                                     |  |
| RH Volatiles/BTEX                                     | EP080      | 1  | 20      | 5.00      | 5.00               | ✓                 | NEPM 2013 B3 & ALS QC Standard                                                     |  |
| latrix Spikes (MS)                                    |            |    |         |           |                    |                   |                                                                                    |  |
| mmonia as N by Discrete analyser                      | EK055G     | 2  | 21      | 9.52      | 5.00               | ✓                 | NEPM 2013 B3 & ALS QC Standard                                                     |  |
| hloride by Discrete Analyser                          | ED045G     | 1  | 20      | 5.00      | 5.00               | ✓                 | NEPM 2013 B3 & ALS QC Standard                                                     |  |
| issolved Mercury by FIMS                              | EG035F     | 1  | 8       | 12.50     | 5.00               | ✓                 | NEPM 2013 B3 & ALS QC Standard                                                     |  |
| issolved Metals by ICP-AES                            | EG005F     | 1  | 24      | 4.17      | 5.00               | ×                 | NEPM 2013 B3 & ALS QC Standard                                                     |  |
| issolved Metals by ICP-MS - Suite A                   | EG020A-F   | 1  | 8       | 12.50     | 5.00               | ✓                 | NEPM 2013 B3 & ALS QC Standard                                                     |  |
| uoride by Auto Titrator                               | EK040P     | 1  | 14      | 7.14      | 5.00               | ✓                 | NEPM 2013 B3 & ALS QC Standard                                                     |  |
| itrite and Nitrate as N (NOx) by Discrete Analyser    | EK059G     | 3  | 34      | 8.82      | 5.00               | ✓                 | NEPM 2013 B3 & ALS QC Standard                                                     |  |
| itrite as N by Discrete Analyser                      | EK057G     | 1  | 10      | 10.00     | 5.00               | ✓                 | NEPM 2013 B3 & ALS QC Standard                                                     |  |
| AH/Phenols (GC/MS - SIM)                              | EP075(SIM) | 0  | 7       | 0.00      | 5.00               | je .              | NEPM 2013 B3 & ALS QC Standard                                                     |  |
| eactive Phosphorus as P-By Discrete Analyser          | EK071G     | 2  | 22      | 9.09      | 5.00               | ✓                 | NEPM 2013 B3 & ALS QC Standard                                                     |  |
| ulfate (Turbidimetric) as SO4 2- by Discrete Analyser | ED041G     | 1  | 8       | 12.50     | 5.00               | <b>√</b>          | NEPM 2013 B3 & ALS QC Standard                                                     |  |
| otal Kjeldahl Nitrogen as N By Discrete Analyser      | EK061G     | 2  | 22      | 9.09      | 5.00               | <b>√</b>          | NEPM 2013 B3 & ALS QC Standard                                                     |  |
| otal Phosphorus as P By Discrete Analyser             | EK067G     | 2  | 23      | 8.70      | 5.00               | <b>√</b>          | NEPM 2013 B3 & ALS QC Standard                                                     |  |
| RH - Semivolatile Fraction                            | EP071      | 0  | 7       | 0.00      | 5.00               | ×                 | NEPM 2013 B3 & ALS QC Standard                                                     |  |
| RH Volatiles/BTEX                                     | EP080      | 1  | 20      | 5.00      | 5.00               |                   | NEPM 2013 B3 & ALS QC Standard                                                     |  |

Page : 9 of 11 Work Order : ES2304011

Client : SENVERSA PTY LTD
Project : S20102 Wetherill Park WME



### **Brief Method Summaries**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

| Analytical Methods                                        | Method   | Matrix | Method Descriptions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-----------------------------------------------------------|----------|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| pH by Auto Titrator                                       | EA005-P  | WATER  | In house: Referenced to APHA 4500 H+ B. This procedure determines pH of water samples by automated ISE. This method is compliant with NEPM Schedule B(3)                                                                                                                                                                                                                                                                                                                                                                                                      |
| Conductivity by Auto Titrator                             | EA010-P  | WATER  | In house: Referenced to APHA 2510 B. This procedure determines conductivity by automated ISE. This method is compliant with NEPM Schedule B(3)                                                                                                                                                                                                                                                                                                                                                                                                                |
| Calculated TDS (from Electrical Conductivity)             | EA016    | WATER  | In house: Calculation from Electrical Conductivity (APHA 2510 B) using a conversion factor specified in the analytical report. This method is compliant with NEPM Schedule B(3)                                                                                                                                                                                                                                                                                                                                                                               |
| Alkalinity by Auto Titrator                               | ED037-P  | WATER  | In house: Referenced to APHA 2320 B This procedure determines alkalinity by automated measurement (e.g. PC Titrate) on a settled supernatant aliquot of the sample using pH 4.5 for indicating the total alkalinity end-point. This method is compliant with NEPM Schedule B(3)                                                                                                                                                                                                                                                                               |
| Sulfate (Turbidimetric) as SO4 2- by<br>Discrete Analyser | ED041G   | WATER  | In house: Referenced to APHA 4500-SO4. Dissolved sulfate is determined in a 0.45um filtered sample. Sulfate ions are converted to a barium sulfate suspension in an acetic acid medium with barium chloride. Light absorbance of the BaSO4 suspension is measured by a photometer and the SO4-2 concentration is determined by comparison of the reading with a standard curve. This method is compliant with NEPM Schedule B(3)                                                                                                                              |
| Chloride by Discrete Analyser                             | ED045G   | WATER  | In house: Referenced to APHA 4500 CI - G.The thiocyanate ion is liberated from mercuric thiocyanate through sequestration of mercury by the chloride ion to form non-ionised mercuric chloride. In the presence of ferric ions the liberated thiocynate forms highly-coloured ferric thiocynate which is measured at 480 nm.                                                                                                                                                                                                                                  |
| Major Cations - Dissolved                                 | ED093F   | WATER  | In house: Referenced to APHA 3120 and 3125; USEPA SW 846 - 6010 and 6020; Cations are determined by either ICP-AES or ICP-MS techniques. This method is compliant with NEPM Schedule B(3) Sodium Adsorption Ratio is calculated from Ca, Mg and Na which determined by ALS in house method QWI-EN/ED093F. This method is compliant with NEPM Schedule B(3) Hardness parameters are calculated based on APHA 2340 B. This method is compliant with NEPM Schedule B(3)                                                                                          |
| Dissolved Metals by ICP-AES                               | EG005F   | WATER  | In house: Referenced to APHA 3120; USEPA SW 846 - 6010. The ICPAES technique ionises the 0.45µm filtered samples, emitting a characteristic spectrum which is compared against matrix matched standards. This method is compliant with NEPM Schedule B(3).                                                                                                                                                                                                                                                                                                    |
| Dissolved Metals by ICP-MS - Suite A                      | EG020A-F | WATER  | In house: Referenced to APHA 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020. Samples are 0.45µm filtered prior to analysis. The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.                                                                                                                                         |
| Dissolved Mercury by FIMS                                 | EG035F   | WATER  | In house: Referenced to APHA 3112 Hg - B (Flow-injection (SnCl2)(Cold Vapour generation) AAS) Samples are 0.45µm filtered prior to analysis. FIM-AAS is an automated flameless atomic absorption technique. A bromate/bromide reagent is used to oxidise any organic mercury compounds in the filtered sample. The ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM Schedule B(3). |
| Fluoride by Auto Titrator                                 | EK040P   | WATER  | In house: Referenced to APHA 4500-F C: CDTA is added to the sample to provide a uniform ionic strength background, adjust pH, and break up complexes. Fluoride concentration is determined by either manual or automatic ISE measurement. This method is compliant with NEPM Schedule B(3)                                                                                                                                                                                                                                                                    |

Page : 10 of 11
Work Order : ES2304011



| Analytical Methods                                      | Method       | Matrix | Method Descriptions                                                                                                                                                                                                                                                                                                                                                                                                           |
|---------------------------------------------------------|--------------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ammonia as N by Discrete analyser                       | EK055G       | WATER  | In house: Referenced to APHA 4500-NH3 G Ammonia is determined by direct colorimetry by Discrete Analyser. This method is compliant with NEPM Schedule B(3)                                                                                                                                                                                                                                                                    |
| Nitrite as N by Discrete Analyser                       | EK057G       | WATER  | In house: Referenced to APHA 4500-NO2- B. Nitrite is determined by direct colourimetry by Discrete Analyser. This method is compliant with NEPM Schedule B(3)                                                                                                                                                                                                                                                                 |
| Nitrate as N by Discrete Analyser                       | EK058G       | WATER  | In house: Referenced to APHA 4500-NO3- F. Nitrate is reduced to nitrite by way of a chemical reduction followed by quantification by Discrete Analyser. Nitrite is determined seperately by direct colourimetry and result for Nitrate calculated as the difference between the two results. This method is compliant with NEPM Schedule B(3)                                                                                 |
| Nitrite and Nitrate as N (NOx) by Discrete Analyser     | EK059G       | WATER  | In house: Referenced to APHA 4500-NO3- F. Combined oxidised Nitrogen (NO2+NO3) is determined by Chemical Reduction and direct colourimetry by Discrete Analyser. This method is compliant with NEPM Schedule B(3)                                                                                                                                                                                                             |
| Total Kjeldahl Nitrogen as N By Discrete<br>Analyser    | EK061G       | WATER  | In house: Referenced to APHA 4500-Norg D (In house). An aliquot of sample is digested using a high temperature Kjeldahl digestion to convert nitrogenous compounds to ammonia. Ammonia is determined colorimetrically by discrete analyser. This method is compliant with NEPM Schedule B(3)                                                                                                                                  |
| Total Nitrogen as N (TKN + Nox) By<br>Discrete Analyser | EK062G       | WATER  | In house: Referenced to APHA 4500-Norg / 4500-NO3 This method is compliant with NEPM Schedule B(3)                                                                                                                                                                                                                                                                                                                            |
| Total Phosphorus as P By Discrete<br>Analyser           | EK067G       | WATER  | In house: Referenced to APHA 4500-P H, Jirka et al, Zhang et al. This procedure involves sulphuric acid digestion of a sample aliquot to break phosphorus down to orthophosphate. The orthophosphate reacts with ammonium molybdate and antimony potassium tartrate to form a complex which is then reduced and its concentration measured at 880nm using discrete analyser. This method is compliant with NEPM Schedule B(3) |
| Reactive Phosphorus as P-By Discrete<br>Analyser        | EK071G       | WATER  | In house: Referenced to APHA 4500-P F Ammonium molybdate and potassium antimonyl tartrate reacts in acid medium with othophosphate to form a heteropoly acid -phosphomolybdic acid - which is reduced to intensely coloured molybdenum blue by ascorbic acid. Quantification is by Discrete Analyser. This method is compliant with NEPM Schedule B(3)                                                                        |
| Ionic Balance by PCT DA and Turbi SO4<br>DA             | * EN055 - PG | WATER  | In house: Referenced to APHA 1030F. This method is compliant with NEPM Schedule B(3)                                                                                                                                                                                                                                                                                                                                          |
| TRH - Semivolatile Fraction                             | EP071        | WATER  | In house: Referenced to USEPA SW 846 - 8015 The sample extract is analysed by Capillary GC/FID and quantification is by comparison against an established 5 point calibration curve of n-Alkane standards. This method is compliant with the QC requirements of NEPM Schedule B(3)                                                                                                                                            |
| PAH/Phenols (GC/MS - SIM)                               | EP075(SIM)   | WATER  | In house: Referenced to USEPA SW 846 - 8270 Sample extracts are analysed by Capillary GC/MS in SIM Mode and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM Schedule B(3)                                                                                                                                                                                |
| TRH Volatiles/BTEX                                      | EP080        | WATER  | In house: Referenced to USEPA SW 846 - 8260 Water samples are directly purged prior to analysis by Capillary GC/MS and quantification is by comparison against an established 5 point calibration curve. Alternatively, a sample is equilibrated in a headspace vial and a portion of the headspace determined by GCMS analysis. This method is compliant with the QC requirements of NEPM Schedule B(3)                      |
| Preparation Methods                                     | Method       | Matrix | Method Descriptions                                                                                                                                                                                                                                                                                                                                                                                                           |
| TKN/TP Digestion                                        | EK061/EK067  | WATER  | In house: Referenced to APHA 4500 Norg - D; APHA 4500 P - H. This method is compliant with NEPM Schedule B(3)                                                                                                                                                                                                                                                                                                                 |

Page : 11 of 11 Work Order : ES2304011



| Preparation Methods                     | Method  | Matrix | Method Descriptions                                                                                                                                                                                                                                                                                                                                                            |
|-----------------------------------------|---------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Separatory Funnel Extraction of Liquids | ORG14   | WATER  | In house: Referenced to USEPA SW 846 - 3510 100 mL to 1L of sample is transferred to a separatory funnel and serially extracted three times using DCM for each extract. The resultant extracts are combined, dehydrated and concentrated for analysis. This method is compliant with NEPM Schedule B(3). ALS default excludes sediment which may be resident in the container. |
| Volatiles Water Preparation             | ORG16-W | WATER  | A 5 mL aliquot or 5 mL of a diluted sample is added to a 40 mL VOC vial for purging.                                                                                                                                                                                                                                                                                           |



#### **QUALITY CONTROL REPORT**

**Work Order** : **ES2304011** Page : 1 of 11

Client : SENVERSA PTY LTD Laboratory : Environmental Division Sydney

Contact : EMMA WALSH Contact : Helen Simpson

Address : Level 24, 1 Market St, Sydney NSW 2000 Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

SYDNEY NSW 2000

 Telephone
 : 02 8252 0000
 Telephone
 : +61 2 8784 8555

 Project
 : S20102 Wetherill Park WME
 Date Samples Received
 : 08-Feb-2023

 Project
 : \$20102 Wetherill Park WME
 Date Samples Received
 : 08-Feb-2023

 Order number
 : --- Date Analysis Commenced
 : 08-Feb-2023

C-O-C number : ---- Issue Date : 14-Feb-2023

Sampler : Bec Chapple

Site : ----

No. of samples analysed : 9

Accreditation No. 825

Accredited for compliance with

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

: 9

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

: SY/103/22

#### Signatories

Quote number

No. of samples received

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Ankit Joshi Senior Chemist - Inorganics Sydney Inorganics, Smithfield, NSW Edwandy Fadjar Organic Coordinator Sydney Organics, Smithfield, NSW

Page : 2 of 11 Work Order : ES2304011

Client : SENVERSA PTY LTD
Project : S20102 Wetherill Park WME



#### **General Comments**

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

# = Indicates failed QC

#### Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR: 0% - 50%; Result > 20 times LOR: 0% - 20%.

| Sub-Matrix: WATER    |                        |                                          |             |      |         | Laboratory I    | Duplicate (DUP) Report |         |                    |
|----------------------|------------------------|------------------------------------------|-------------|------|---------|-----------------|------------------------|---------|--------------------|
| Laboratory sample ID | Sample ID              | Method: Compound                         | CAS Number  | LOR  | Unit    | Original Result | Duplicate Result       | RPD (%) | Acceptable RPD (%) |
| EG005(ED093)F: Dis   | solved Metals by ICP-  | AES (QC Lot: 4859853)                    |             |      |         |                 |                        |         |                    |
| ES2303873-004        | Anonymous              | EG005F: Manganese                        | 7439-96-5   | 0.01 | mg/L    | <0.01           | 0.04                   | 115     | No Limit           |
|                      |                        | EG005F: Iron                             | 7439-89-6   | 0.05 | mg/L    | 0.10            | 0.10                   | 0.0     | No Limit           |
| ES2303873-014        | Anonymous              | EG005F: Manganese                        | 7439-96-5   | 0.01 | mg/L    | 0.28            | 0.30                   | 4.1     | 0% - 20%           |
| EG005(ED093)F: Dis   | solved Metals by ICP-  | AES (QC Lot: 4859854)                    |             |      |         |                 |                        |         |                    |
| ES2304011-006        | MW3                    | EG005F: Manganese                        | 7439-96-5   | 0.01 | mg/L    | 5.99            | 6.28                   | 4.6     | 0% - 20%           |
|                      |                        | EG005F: Iron                             | 7439-89-6   | 0.05 | mg/L    | 5.05            | 5.29                   | 4.7     | 0% - 20%           |
| EA005P: pH by PC T   | itrator (QC Lot: 48599 | )14)                                     |             |      |         |                 |                        |         |                    |
| ES2303998-001        | Anonymous              | EA005-P: pH Value                        |             | 0.01 | pH Unit | 8.25            | 8.21                   | 0.5     | 0% - 20%           |
| ES2304011-007        | MW4                    | EA005-P: pH Value                        |             | 0.01 | pH Unit | 7.72            | 7.73                   | 0.1     | 0% - 20%           |
| EA010P: Conductivi   | ty by PC Titrator (QC  | Lot: 4859910)                            |             |      |         |                 |                        |         |                    |
| ES2303998-001        | Anonymous              | EA010-P: Electrical Conductivity @ 25°C  |             | 1    | μS/cm   | 488             | 486                    | 0.4     | 0% - 20%           |
| ES2303799-001        | Anonymous              | EA010-P: Electrical Conductivity @ 25°C  |             | 1    | μS/cm   | 1240            | 1230                   | 0.6     | 0% - 20%           |
| ES2303915-029        | Anonymous              | EA010-P: Electrical Conductivity @ 25°C  |             | 1    | μS/cm   | 112             | 111                    | 1.0     | 0% - 20%           |
| ES2303915-015        | Anonymous              | EA010-P: Electrical Conductivity @ 25°C  |             | 1    | μS/cm   | 3               | 3                      | 0.0     | No Limit           |
| ES2304011-007        | MW4                    | EA010-P: Electrical Conductivity @ 25°C  |             | 1    | μS/cm   | 19900           | 19800                  | 0.4     | 0% - 20%           |
| ED037P: Alkalinity b | y PC Titrator (QC Lot: | : 4859913)                               |             |      |         |                 |                        |         |                    |
| ES2303934-009        | Anonymous              | ED037-P: Hydroxide Alkalinity as CaCO3   | DMO-210-001 | 1    | mg/L    | <1              | <1                     | 0.0     | No Limit           |
|                      |                        | ED037-P: Carbonate Alkalinity as CaCO3   | 3812-32-6   | 1    | mg/L    | <1              | <1                     | 0.0     | No Limit           |
|                      |                        | ED037-P: Bicarbonate Alkalinity as CaCO3 | 71-52-3     | 1    | mg/L    | 14              | 13                     | 10.4    | 0% - 50%           |
|                      |                        | ED037-P: Total Alkalinity as CaCO3       |             | 1    | mg/L    | 14              | 13                     | 10.4    | 0% - 50%           |
| ES2304011-007        | MW4                    | ED037-P: Hydroxide Alkalinity as CaCO3   | DMO-210-001 | 1    | mg/L    | <1              | <1                     | 0.0     | No Limit           |
|                      |                        | ED037-P: Carbonate Alkalinity as CaCO3   | 3812-32-6   | 1    | mg/L    | <1              | <1                     | 0.0     | No Limit           |
|                      |                        | ED037-P: Bicarbonate Alkalinity as CaCO3 | 71-52-3     | 1    | mg/L    | 1110            | 927                    | 17.7    | 0% - 20%           |

Page : 3 of 11 Work Order : ES2304011



| Sub-Matrix: WATER    |                          |                                        |            | Laboratory Duplicate (DUP) Report |      |                 |                  |         |                    |
|----------------------|--------------------------|----------------------------------------|------------|-----------------------------------|------|-----------------|------------------|---------|--------------------|
| Laboratory sample ID | Sample ID                | Method: Compound                       | CAS Number | LOR                               | Unit | Original Result | Duplicate Result | RPD (%) | Acceptable RPD (%) |
| ED037P: Alkalinity   | by PC Titrator (QC Lot:  | 4859913) - continued                   |            |                                   |      |                 |                  |         |                    |
| ES2304011-007        | MW4                      | ED037-P: Total Alkalinity as CaCO3     |            | 1                                 | mg/L | 1110            | 927              | 17.7    | 0% - 20%           |
| ED041G: Sulfate (T   | urbidimetric) as SO4 2-  | by DA (QC Lot: 4860151)                |            |                                   |      |                 |                  |         |                    |
| ES2304009-005        | Anonymous                | ED041G: Sulfate as SO4 - Turbidimetric | 14808-79-8 | 1                                 | mg/L | 10              | 10               | 0.0     | 0% - 50%           |
| ED045G: Chloride I   | by Discrete Analyser (Q  | C Lot: 4860150)                        |            |                                   |      |                 |                  |         |                    |
| ES2304029-010        | Anonymous                | ED045G: Chloride                       | 16887-00-6 | 1                                 | mg/L | 13              | 13               | 0.0     | 0% - 50%           |
| ES2304009-005        | Anonymous                | ED045G: Chloride                       | 16887-00-6 | 1                                 | mg/L | 5               | 5                | 0.0     | No Limit           |
| ED093F: Dissolved    | Major Cations (QC Lot:   | : 4859850)                             |            |                                   |      |                 |                  |         |                    |
| ES2303873-013        | Anonymous                | ED093F: Calcium                        | 7440-70-2  | 1                                 | mg/L | 30              | 30               | 0.0     | 0% - 20%           |
|                      |                          | ED093F: Magnesium                      | 7439-95-4  | 1                                 | mg/L | 41              | 40               | 0.0     | 0% - 20%           |
|                      |                          | ED093F: Sodium                         | 7440-23-5  | 1                                 | mg/L | 493             | 482              | 2.1     | 0% - 20%           |
|                      |                          | ED093F: Potassium                      | 7440-09-7  | 1                                 | mg/L | 38              | 38               | 0.0     | 0% - 20%           |
| ES2303640-001        | Anonymous                | ED093F: Calcium                        | 7440-70-2  | 1                                 | mg/L | 248             | 252              | 1.3     | 0% - 20%           |
|                      |                          | ED093F: Magnesium                      | 7439-95-4  | 1                                 | mg/L | 66              | 66               | 0.0     | 0% - 20%           |
|                      |                          | ED093F: Sodium                         | 7440-23-5  | 1                                 | mg/L | 1               | 1                | 0.0     | No Limit           |
|                      |                          | ED093F: Potassium                      | 7440-09-7  | 1                                 | mg/L | 8               | 8                | 0.0     | No Limit           |
| ED093F: Dissolved    | Major Cations (QC Lot:   | : 4859855)                             |            |                                   |      |                 |                  |         |                    |
| ES2304011-008        | MW6                      | ED093F: Calcium                        | 7440-70-2  | 1                                 | mg/L | 50              | 48               | 3.3     | 0% - 20%           |
|                      |                          | ED093F: Magnesium                      | 7439-95-4  | 1                                 | mg/L | 112             | 111              | 0.0     | 0% - 20%           |
|                      |                          | ED093F: Sodium                         | 7440-23-5  | 1                                 | mg/L | 373             | 389              | 4.2     | 0% - 20%           |
|                      |                          | ED093F: Potassium                      | 7440-09-7  | 1                                 | mg/L | 6               | 5                | 0.0     | No Limit           |
| EG020F: Dissolved    | Metals by ICP-MS (QC     | Lot: 4859851)                          |            |                                   |      |                 |                  |         |                    |
| ES2303640-001        | Anonymous                | EG020A-F: Cadmium                      | 7440-43-9  | 0.0001                            | mg/L | 0.538           | 0.546            | 1.6     | 0% - 20%           |
|                      |                          | EG020A-F: Arsenic                      | 7440-38-2  | 0.001                             | mg/L | 0.034           | 0.034            | 0.0     | 0% - 20%           |
|                      |                          | EG020A-F: Chromium                     | 7440-47-3  | 0.001                             | mg/L | <0.001          | <0.001           | 0.0     | No Limit           |
|                      |                          | EG020A-F: Copper                       | 7440-50-8  | 0.001                             | mg/L | 782             | 786              | 0.5     | 0% - 20%           |
|                      |                          | EG020A-F: Lead                         | 7439-92-1  | 0.001                             | mg/L | 2.72            | 2.74             | 0.7     | 0% - 20%           |
|                      |                          | EG020A-F: Nickel                       | 7440-02-0  | 0.001                             | mg/L | 2.03            | 2.04             | 0.7     | 0% - 20%           |
|                      |                          | EG020A-F: Zinc                         | 7440-66-6  | 0.005                             | mg/L | 134             | 129              | 3.5     | 0% - 20%           |
| EG035F: Dissolved    | Mercury by FIMS (QC I    | Lot: 4859849)                          |            |                                   |      |                 |                  |         |                    |
| ES2304011-004        | MW1                      | EG035F: Mercury                        | 7439-97-6  | 0.0001                            | mg/L | <0.0001         | <0.0001          | 0.0     | No Limit           |
| EK040P: Fluoride b   | y PC Titrator (QC Lot: 4 | 4859908)                               |            |                                   |      |                 |                  |         |                    |
| ES2303799-001        | Anonymous                | EK040P: Fluoride                       | 16984-48-8 | 0.1                               | mg/L | 0.1             | <0.1             | 0.0     | No Limit           |
| ES2304011-007        | MW4                      | EK040P: Fluoride                       | 16984-48-8 | 0.1                               | mg/L | 1.6             | 1.6              | 0.0     | 0% - 50%           |
| EK055G: Ammonia      | as N by Discrete Analys  | ser (QC Lot: 4861210)                  |            |                                   |      |                 |                  |         |                    |
| ES2303838-001        | Anonymous                | EK055G: Ammonia as N                   | 7664-41-7  | 0.01                              | mg/L | 0.01            | 0.01             | 0.0     | No Limit           |
| ES2303866-007        | Anonymous                | EK055G: Ammonia as N                   | 7664-41-7  | 0.01                              | mg/L | 0.07            | 0.02             | 93.9    | No Limit           |
| EK055G: Ammonia      | as N by Discrete Analys  | ser (QC Lot: 4861212)                  |            |                                   |      |                 |                  |         |                    |
| ES2304011-008        | MW6                      | EK055G; Ammonia as N                   | 7664-41-7  | 0.01                              | mg/L | 0.02            | 0.02             | 0.0     | No Limit           |

Page : 4 of 11
Work Order : ES2304011



| Sub-Matrix: WATER    | VATER Laboratory Duplicate (DUP) Report |                                      |            |      |      |                 |                  |         |                    |
|----------------------|-----------------------------------------|--------------------------------------|------------|------|------|-----------------|------------------|---------|--------------------|
| Laboratory sample ID | Sample ID                               | Method: Compound                     | CAS Number | LOR  | Unit | Original Result | Duplicate Result | RPD (%) | Acceptable RPD (%) |
| EK057G: Nitrite as N | N by Discrete Analyser (QC              |                                      |            |      |      |                 |                  |         |                    |
| ES2303855-001        | Anonymous                               | EK057G: Nitrite as N                 | 14797-65-0 | 0.01 | mg/L | 4.04            | 4.01             | 0.9     | 0% - 20%           |
| EW2300593-011        | Anonymous                               | EK057G: Nitrite as N                 | 14797-65-0 | 0.01 | mg/L | <0.01           | <0.01            | 0.0     | No Limit           |
| EK059G: Nitrite plus | Nitrate as N (NOx) by Disc              | rete Analyser (QC Lot: 4861209)      |            |      |      |                 |                  |         |                    |
| ES2303838-001        | Anonymous                               | EK059G: Nitrite + Nitrate as N       |            | 0.01 | mg/L | 0.61            | 0.61             | 0.0     | 0% - 20%           |
| ES2303866-007        | Anonymous                               | EK059G: Nitrite + Nitrate as N       |            | 0.01 | mg/L | 0.01            | 0.01             | 0.0     | No Limit           |
| EK059G: Nitrite plus | Nitrate as N (NOx) by Disc              | rete Analyser (QC Lot: 4861211)      |            |      |      |                 |                  |         |                    |
| ES2304011-008        | MW6                                     | EK059G: Nitrite + Nitrate as N       |            | 0.01 | mg/L | 1.25            | 1.18             | 6.0     | 0% - 20%           |
| EK059G: Nitrite plus | Nitrate as N (NOx) by Disc              | rete Analyser (QC Lot: 4864095)      |            |      |      |                 |                  |         |                    |
| ME2300270-001        | Anonymous                               | EK059G: Nitrite + Nitrate as N       |            | 0.01 | mg/L | 0.01            | 0.02             | 0.0     | No Limit           |
| EK061G: Total Kjelda | ahl Nitrogen By Discrete Ana            | alyser (QC Lot: 4861208)             |            |      |      |                 |                  |         |                    |
| ES2304011-003        | QC301                                   | EK061G: Total Kjeldahl Nitrogen as N |            | 0.1  | mg/L | <0.1            | <0.1             | 0.0     | No Limit           |
| EK061G: Total Kjelda | ahl Nitrogen By Discrete Ana            |                                      |            |      |      |                 |                  |         |                    |
| ES2303697-005        | Anonymous                               | EK061G: Total Kjeldahl Nitrogen as N |            | 0.1  | mg/L | 4.7             | 4.6              | 2.7     | 0% - 20%           |
| EW2300556-001        | Anonymous                               | EK061G: Total Kjeldahl Nitrogen as N |            | 0.1  | mg/L | 232             | 246              | 5.7     | 0% - 50%           |
| EK067G: Total Phos   | phorus as P by Discrete Ana             | llyser (QC Lot: 4861207)             |            |      |      |                 |                  |         |                    |
| ES2303955-004        | Anonymous                               | EK067G: Total Phosphorus as P        |            | 0.01 | mg/L | 296             | 316              | 6.4     | 0% - 20%           |
| ES2304011-003        | QC301                                   | EK067G: Total Phosphorus as P        |            | 0.01 | mg/L | <0.01           | 0.03             | 101     | No Limit           |
| EK067G: Total Phos   | phorus as P by Discrete Ana             | llyser (QC Lot: 4864091)             |            |      |      |                 |                  |         |                    |
| ES2303697-005        | Anonymous                               | EK067G: Total Phosphorus as P        |            | 0.01 | mg/L | 0.46            | 0.44             | 4.7     | 0% - 20%           |
| EW2300556-001        | Anonymous                               | EK067G: Total Phosphorus as P        |            | 0.01 | mg/L | 37.0            | 37.9             | 2.6     | 0% - 20%           |
| EK071G: Reactive Pl  | hosphorus as P by discrete              | analyser (QC Lot: 4860147)           |            |      |      |                 |                  |         |                    |
| ES2303957-001        | Anonymous                               | EK071G: Reactive Phosphorus as P     | 14265-44-2 | 0.01 | mg/L | <0.01           | <0.01            | 0.0     | No Limit           |
| ES2304009-005        | Anonymous                               | EK071G: Reactive Phosphorus as P     | 14265-44-2 | 0.01 | mg/L | <0.01           | <0.01            | 0.0     | No Limit           |
| EK071G: Reactive Pl  | hosphorus as P by discrete              | analyser (QC Lot: 4860152)           |            |      |      |                 |                  |         |                    |
| ES2304011-008        | MW6                                     | EK071G: Reactive Phosphorus as P     | 14265-44-2 | 0.01 | mg/L | <0.01           | 0.02             | 67.3    | No Limit           |
| EP080/071: Total Pet | roleum Hydrocarbons (QC                 | Lot: 4860105)                        |            |      |      |                 |                  |         |                    |
| ES2303866-001        | Anonymous                               | EP080: C6 - C9 Fraction              |            | 20   | μg/L | <20             | <20              | 0.0     | No Limit           |
| ES2304011-003        | QC301                                   | EP080: C6 - C9 Fraction              |            | 20   | μg/L | <20             | <20              | 0.0     | No Limit           |
| EP080/071: Total Red | coverable Hydrocarbons - N              | EPM 2013 Fractions (QC Lot: 4860105) |            |      |      |                 |                  |         |                    |
| ES2303866-001        | Anonymous                               | EP080: C6 - C10 Fraction             | C6_C10     | 20   | μg/L | <20             | <20              | 0.0     | No Limit           |
| ES2304011-003        | QC301                                   | EP080: C6 - C10 Fraction             | C6_C10     | 20   | μg/L | <20             | <20              | 0.0     | No Limit           |
| EP080: BTEXN (QC     | Lot: 4860105)                           |                                      |            |      |      |                 |                  |         |                    |
| ES2303866-001        | Anonymous                               | EP080: Benzene                       | 71-43-2    | 1    | μg/L | <1              | <1               | 0.0     | No Limit           |
|                      |                                         | EP080: Toluene                       | 108-88-3   | 2    | μg/L | <2              | <2               | 0.0     | No Limit           |
|                      |                                         | EP080: Ethylbenzene                  | 100-41-4   | 2    | μg/L | <2              | <2               | 0.0     | No Limit           |
|                      |                                         | EP080: meta- & para-Xylene           | 108-38-3   | 2    | μg/L | <2              | <2               | 0.0     | No Limit           |
|                      |                                         |                                      | 106-42-3   |      | -    | _               | _                |         |                    |
|                      |                                         | EP080: ortho-Xylene                  | 95-47-6    | 2    | μg/L | <2              | <2               | 0.0     | No Limit           |

Page : 5 of 11 Work Order : ES2304011



| Sub-Matrix: WATER    |                                            | Laboratory Duplicate (DUP) Report |            |     |      |                 |                  |         |                    |  |  |
|----------------------|--------------------------------------------|-----------------------------------|------------|-----|------|-----------------|------------------|---------|--------------------|--|--|
| Laboratory sample ID | Sample ID                                  | Method: Compound                  | CAS Number | LOR | Unit | Original Result | Duplicate Result | RPD (%) | Acceptable RPD (%) |  |  |
| EP080: BTEXN (QC     | EP080: BTEXN (QC Lot: 4860105) - continued |                                   |            |     |      |                 |                  |         |                    |  |  |
| ES2303866-001        | Anonymous                                  | EP080: Naphthalene                | 91-20-3    | 5   | μg/L | <5              | <5               | 0.0     | No Limit           |  |  |
| ES2304011-003        | QC301                                      | EP080: Benzene                    | 71-43-2    | 1   | μg/L | <1              | <1               | 0.0     | No Limit           |  |  |
|                      |                                            | EP080: Toluene                    | 108-88-3   | 2   | μg/L | <2              | <2               | 0.0     | No Limit           |  |  |
|                      |                                            | EP080: Ethylbenzene               | 100-41-4   | 2   | μg/L | <2              | <2               | 0.0     | No Limit           |  |  |
|                      |                                            | EP080: meta- & para-Xylene        | 108-38-3   | 2   | μg/L | <2              | <2               | 0.0     | No Limit           |  |  |
|                      |                                            |                                   | 106-42-3   |     |      |                 |                  |         |                    |  |  |
|                      |                                            | EP080: ortho-Xylene               | 95-47-6    | 2   | μg/L | <2              | <2               | 0.0     | No Limit           |  |  |
|                      |                                            | EP080: Naphthalene                | 91-20-3    | 5   | μg/L | <5              | <5               | 0.0     | No Limit           |  |  |

Page : 6 of 11 Work Order : ES2304011

Client : SENVERSA PTY LTD
Project : S20102 Wetherill Park WME



### Method Blank (MB) and Laboratory Control Sample (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

| Sub-Matrix: WATER                                                       |            | Method Blank (MB) | Laboratory Control Spike (LCS) Report |           |                    |            |              |      |
|-------------------------------------------------------------------------|------------|-------------------|---------------------------------------|-----------|--------------------|------------|--------------|------|
|                                                                         |            |                   | Report                                | Spike     | Spike Recovery (%) | Acceptable | e Limits (%) |      |
| Method: Compound                                                        | CAS Number | LOR               | Unit                                  | Result    | Concentration      | LCS        | Low          | High |
| EG005(ED093)F: Dissolved Metals by ICP-AES (QCLot: 485                  | 9853)      |                   |                                       |           |                    |            |              |      |
| EG005F: Iron                                                            | 7439-89-6  | 0.05              | mg/L                                  | <0.05     | 0.5 mg/L           | 93.5       | 82.0         | 114  |
| EG005F: Manganese                                                       | 7439-96-5  | 0.01              | mg/L                                  | <0.01     | 0.1 mg/L           | 100        | 81.0         | 113  |
| EG005(ED093)F: Dissolved Metals by ICP-AES (QCLot: 485                  | 9854)      |                   |                                       |           |                    |            |              |      |
| EG005F: Iron                                                            | 7439-89-6  | 0.05              | mg/L                                  | <0.05     | 0.5 mg/L           | 97.0       | 82.0         | 114  |
| EG005F: Manganese                                                       | 7439-96-5  | 0.01              | mg/L                                  | <0.01     | 0.1 mg/L           | 98.2       | 81.0         | 113  |
| EA005P: pH by PC Titrator (QCLot: 4859914)                              |            |                   |                                       |           |                    |            |              |      |
| EA005-P: pH Value                                                       |            |                   | pH Unit                               |           | 4 pH Unit          | 101        | 98.8         | 101  |
| Zi toco i . pri valuo                                                   |            |                   | P -                                   |           | 7 pH Unit          | 100        | 99.2         | 101  |
| EA010P: Conductivity by PC Titrator (QCLot: 4859910)                    |            |                   |                                       |           |                    |            |              |      |
| EA010-P: Electrical Conductivity @ 25°C                                 |            | 1                 | µS/cm                                 | <1        | 220 µS/cm          | 93.5       | 89.9         | 110  |
| Enteron : Elocation contactivity @ 20 0                                 |            |                   |                                       | <1        | 2100 µS/cm         | 101        | 90.2         | 111  |
| ED037P: Alkalinity by PC Titrator (QCLot: 4859913)                      |            |                   |                                       |           |                    |            |              |      |
| ED037-P: Total Alkalinity as CaCO3                                      |            |                   | mg/L                                  |           | 200 mg/L           | 92.9       | 81.0         | 111  |
| EBOOT 1. Total / intallinty as oacco                                    |            |                   | 9/ _                                  |           | 50 mg/L            | 111        | 80.0         | 120  |
| ED041G: Sulfate (Turbidimetric) as SO4 2- by DA (QCLot: 4               | 1960151)   |                   |                                       |           |                    |            |              |      |
| ED041G: Sulfate as SO4 - Turbidimetric                                  | 14808-79-8 | 1                 | mg/L                                  | <1        | 25 mg/L            | 108        | 82.0         | 122  |
| LD041G. Suilate as 304 - Turbiumetric                                   | 11000 70 0 | •                 | mg/L                                  | <1        | 500 mg/L           | 107        | 82.0         | 122  |
| ED04EC: Chlorido hy Diograto Analyses (OCL et: 49604E0)                 |            |                   |                                       |           |                    |            |              |      |
| ED045G: Chloride by Discrete Analyser (QCLot: 4860150) ED045G: Chloride | 16887-00-6 | 1                 | mg/L                                  | <1        | 50 mg/L            | 105        | 80.9         | 127  |
| ED043G. Chloride                                                        | 10007 00 0 |                   | mg/L                                  | <1        | 1000 mg/L          | 100        | 80.9         | 127  |
| ED002E: Discalled Major Cations (OCL at: 4950950)                       |            |                   |                                       |           |                    |            |              |      |
| ED093F: Dissolved Major Cations (QCLot: 4859850) ED093F: Calcium        | 7440-70-2  | 1                 | mg/L                                  | <1        | 50 mg/L            | 97.3       | 80.0         | 114  |
| ED093F: Calcium ED093F: Magnesium                                       | 7439-95-4  | 1                 | mg/L                                  | <1        | 50 mg/L            | 102        | 90.0         | 116  |
| ED093F: Magnesium ED093F: Sodium                                        | 7440-23-5  | 1                 | mg/L                                  | <1        | 50 mg/L            | 105        | 82.0         | 120  |
| ED093F: Sodium ED093F: Potassium                                        | 7440-09-7  | 1                 | mg/L                                  | <1        | 50 mg/L            | 104        | 85.0         | 113  |
|                                                                         | 7440 03 7  |                   | ilig/L                                |           | 00 Hig/L           | 104        | 00.0         | 110  |
| ED093F: Dissolved Major Cations (QCLot: 4859855)                        | 7440-70-2  | 1                 | ma/l                                  | <1        | 50 mg/l            | 97.2       | 80.0         | 114  |
| ED093F: Calcium                                                         | 7440-70-2  | 1                 | mg/L                                  | <1        | 50 mg/L<br>50 mg/L | 104        | 90.0         | 114  |
| ED093F: Magnesium                                                       | 7439-95-4  | 1                 | mg/L                                  | <1        | 50 mg/L            | 112        | 82.0         | 120  |
| ED093F: Sodium                                                          | 7440-23-5  | 1                 | mg/L                                  | <1        | 50 mg/L            | 104        | 85.0         | 113  |
| ED093F: Potassium                                                       | 1440-09-1  | l                 | mg/L                                  | <b>\1</b> | 50 Hg/L            | 104        | 65.U         | 113  |
| EG020F: Dissolved Metals by ICP-MS (QCLot: 4859851)                     | 7440.00.0  | 0.001             |                                       | 10.004    | 0.4                | 07.0       | 05.2         | 444  |
| EG020A-F: Arsenic                                                       | 7440-38-2  | 0.001             | mg/L                                  | <0.001    | 0.1 mg/L           | 97.9       | 85.0         | 114  |
| EG020A-F: Cadmium                                                       | 7440-43-9  | 0.0001            | mg/L                                  | <0.0001   | 0.1 mg/L           | 96.6       | 84.0         | 110  |

Page : 7 of 11
Work Order : ES2304011



| Sub-Matrix: WATER                                                                            |                 |         |        | Method Blank (MB) | Laboratory Control Spike (LCS) Report |                    |              |            |  |  |
|----------------------------------------------------------------------------------------------|-----------------|---------|--------|-------------------|---------------------------------------|--------------------|--------------|------------|--|--|
|                                                                                              |                 |         |        | Report            | Spike                                 | Spike Recovery (%) | Acceptable   | Limits (%) |  |  |
| Method: Compound                                                                             | CAS Number      | LOR     | Unit   | Result            | Concentration                         | LCS                | Low          | High       |  |  |
| EG020F: Dissolved Metals by ICP-MS (QCLot: 4859851) - c                                      | continued       |         |        |                   |                                       |                    |              |            |  |  |
| EG020A-F: Chromium                                                                           | 7440-47-3       | 0.001   | mg/L   | <0.001            | 0.1 mg/L                              | 96.0               | 85.0         | 111        |  |  |
| EG020A-F: Copper                                                                             | 7440-50-8       | 0.001   | mg/L   | <0.001            | 0.1 mg/L                              | 94.7               | 81.0         | 111        |  |  |
| EG020A-F: Lead                                                                               | 7439-92-1       | 0.001   | mg/L   | <0.001            | 0.1 mg/L                              | 95.2               | 83.0         | 111        |  |  |
| EG020A-F: Nickel                                                                             | 7440-02-0       | 0.001   | mg/L   | <0.001            | 0.1 mg/L                              | 95.0               | 82.0         | 112        |  |  |
| EG020A-F: Zinc                                                                               | 7440-66-6       | 0.005   | mg/L   | <0.005            | 0.1 mg/L                              | 96.4               | 81.0         | 117        |  |  |
| EG035F: Dissolved Mercury by FIMS (QCLot: 4859849)                                           |                 |         |        |                   |                                       |                    |              |            |  |  |
| EG035F: Mercury                                                                              | 7439-97-6       | 0.0001  | mg/L   | <0.0001           | 0.01 mg/L                             | 99.6               | 83.0         | 105        |  |  |
| EK040P: Fluoride by PC Titrator (QCLot: 4859908)                                             |                 |         |        |                   |                                       |                    |              |            |  |  |
| EK040P: Fluoride                                                                             | 16984-48-8      | 0.1     | mg/L   | <0.1              | 5 mg/L                                | 96.4               | 82.0         | 116        |  |  |
| EK055G: Ammonia as N by Discrete Analyser (QCLot: 486'                                       | 1210)           |         |        |                   |                                       |                    |              |            |  |  |
| EK055G: Ammonia as N                                                                         | 7664-41-7       | 0.01    | mg/L   | <0.01             | 1 mg/L                                | 110                | 90.0         | 114        |  |  |
| EK055G: Ammonia as N by Discrete Analyser (QCLot: 486                                        | 1212)           |         |        |                   |                                       |                    |              |            |  |  |
| EK055G: Ammonia as N                                                                         | 7664-41-7       | 0.01    | mg/L   | <0.01             | 1 mg/L                                | 110                | 90.0         | 114        |  |  |
| EK057G: Nitrite as N by Discrete Analyser (QCLot: 486014                                     | (6)             |         |        |                   |                                       |                    |              |            |  |  |
| EK057G: Nitrite as N                                                                         | 14797-65-0      | 0.01    | mg/L   | <0.01             | 0.5 mg/L                              | 98.4               | 82.0         | 114        |  |  |
| EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analys                                   |                 |         | g      |                   |                                       |                    |              |            |  |  |
| EK059G: Nitrite Plus Nitrate as N (NOX) by Discrete Analyse                                  | ser (QCLOt: 46) | 0.01    | mg/L   | <0.01             | 0.5 mg/L                              | 103                | 91.0         | 113        |  |  |
|                                                                                              | (00) -1-40      |         | mg/L   | -0.01             | o.o mg/L                              | 100                | 01.0         | 110        |  |  |
| EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analys<br>EK059G: Nitrite + Nitrate as N | ser (QCLot: 48) | 0.01    | mg/L   | <0.01             | 0.5 mg/L                              | 104                | 91.0         | 113        |  |  |
|                                                                                              |                 |         | IIIg/L | <0.01             | 0.5 mg/L                              | 104                | 91.0         | 113        |  |  |
| EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analys                                   | ser (QCLot: 48  | <u></u> |        | <b>40.04</b>      | 0.5/                                  | 05.0               | 04.0         | 440        |  |  |
| EK059G: Nitrite + Nitrate as N                                                               |                 | 0.01    | mg/L   | <0.01             | 0.5 mg/L                              | 95.9               | 91.0         | 113        |  |  |
| EK061G: Total Kjeldahl Nitrogen By Discrete Analyser (QC                                     | Lot: 4861208)   |         |        |                   |                                       |                    |              |            |  |  |
| EK061G: Total Kjeldahl Nitrogen as N                                                         |                 | 0.1     | mg/L   | <0.1              | 10 mg/L                               | 97.9               | 69.0         | 101        |  |  |
|                                                                                              |                 |         |        | <0.1<br><0.1      | 1 mg/L<br>5 mg/L                      | 105<br>105         | 70.0<br>70.0 | 118<br>130 |  |  |
|                                                                                              |                 |         |        | <b>~0.1</b>       | 3 Hig/L                               | 103                | 70.0         | 130        |  |  |
| EK061G: Total Kjeldahl Nitrogen By Discrete Analyser (QC                                     |                 | 0.1     |        | .0.4              | 40                                    | 400                | 20.0         | 101        |  |  |
| EK061G: Total Kjeldahl Nitrogen as N                                                         |                 | 0.1     | mg/L   | <0.1<br><0.1      | 10 mg/L<br>1 mg/L                     | 100<br>101         | 69.0<br>70.0 | 101<br>118 |  |  |
|                                                                                              |                 |         |        | <0.1              | 5 mg/L                                | 101                | 70.0<br>70.0 | 130        |  |  |
|                                                                                              |                 |         |        | 40.1              | 3 Hig/L                               | 104                | 70.0         | 130        |  |  |
| EK067G: Total Phosphorus as P by Discrete Analyser (QC                                       |                 | 0.01    | ma/l   | <0.01             | 4.42 mg/l                             | 07.7               | 71.2         | 126        |  |  |
| EK067G: Total Phosphorus as P                                                                |                 | 0.01    | mg/L   | <0.01<br><0.01    | 4.42 mg/L<br>0.442 mg/L               | 97.7<br>96.4       | 71.3<br>71.3 | 126<br>126 |  |  |
|                                                                                              |                 |         |        | <0.01             | 0.442 mg/L<br>1 mg/L                  | 98.7               | 71.3         | 126        |  |  |
| FK0C70. Tatal Phaselanus and Phaselanus (00)                                                 | 1 -4: 4004004   |         |        | -0.01             | i iligit                              | 00.1               | ,            | 120        |  |  |
| EK067G: Total Phosphorus as P by Discrete Analyser (QC                                       | Lot: 4864091)   | 0.01    | mg/L   | <0.01             | 4.42 mg/L                             | 92.7               | 71.3         | 126        |  |  |
| EK067G: Total Phosphorus as P                                                                |                 | 0.01    | mg/L   | <0.01             | 4.42 mg/L<br>0.442 mg/L               | 95.2               | 71.3         | 126        |  |  |
|                                                                                              |                 |         |        | <0.01             | 1 mg/L                                | 99.5               | 71.3         | 126        |  |  |

Page : 8 of 11 Work Order : ES2304011



| Sub-Matrix: WATER                                |                        |      |      | Method Blank (MB) |               | Laboratory Control Spike (LCS | S) Report  |            |
|--------------------------------------------------|------------------------|------|------|-------------------|---------------|-------------------------------|------------|------------|
|                                                  |                        |      |      | Report            | Spike         | Spike Recovery (%)            | Acceptable | Limits (%) |
| Method: Compound                                 | CAS Number             | LOR  | Unit | Result            | Concentration | LCS                           | Low        | High       |
| EK071G: Reactive Phosphorus as P by discrete ana | lyser (QCLot: 4860147) | )    |      |                   |               |                               |            |            |
| EK071G: Reactive Phosphorus as P                 | 14265-44-2             | 0.01 | mg/L | <0.01             | 0.5 mg/L      | 98.8                          | 85.0       | 117        |
| EK071G: Reactive Phosphorus as P by discrete ana | lyser (QCLot: 4860152) |      |      |                   |               |                               |            |            |
| EK071G: Reactive Phosphorus as P                 | 14265-44-2             | 0.01 | mg/L | <0.01             | 0.5 mg/L      | 100.0                         | 85.0       | 117        |
| EP075(SIM)A: Phenolic Compounds (QCLot: 48598    | 14)                    |      |      |                   |               |                               |            |            |
| EP075(SIM): Phenol                               | 108-95-2               | 1    | μg/L | <1.0              | 5 μg/L        | 30.5                          | 24.5       | 61.9       |
| EP075(SIM): 2-Chlorophenol                       | 95-57-8                | 1    | μg/L | <1.0              | 5 μg/L        | 61.4                          | 52.0       | 90.0       |
| EP075(SIM): 2-Methylphenol                       | 95-48-7                | 1    | μg/L | <1.0              | 5 μg/L        | 55.1                          | 51.0       | 91.0       |
| EP075(SIM): 3- & 4-Methylphenol                  | 1319-77-3              | 2    | μg/L | <2.0              | 10 μg/L       | 51.2                          | 44.0       | 88.0       |
| EP075(SIM): 2-Nitrophenol                        | 88-75-5                | 1    | μg/L | <1.0              | 5 μg/L        | 67.1                          | 48.0       | 100        |
| EP075(SIM): 2.4-Dimethylphenol                   | 105-67-9               | 1    | μg/L | <1.0              | 5 μg/L        | 49.3                          | 49.0       | 99.0       |
| EP075(SIM): 2.4-Dichlorophenol                   | 120-83-2               | 1    | μg/L | <1.0              | 5 μg/L        | 68.7                          | 53.0       | 105        |
| EP075(SIM): 2.6-Dichlorophenol                   | 87-65-0                | 1    | μg/L | <1.0              | 5 μg/L        | 68.7                          | 57.0       | 105        |
| EP075(SIM): 4-Chloro-3-methylphenol              | 59-50-7                | 1    | μg/L | <1.0              | 5 μg/L        | 64.3                          | 53.0       | 99.0       |
| EP075(SIM): 2.4.6-Trichlorophenol                | 88-06-2                | 1    | μg/L | <1.0              | 5 μg/L        | 71.6                          | 50.0       | 106        |
| EP075(SIM): 2.4.5-Trichlorophenol                | 95-95-4                | 1    | μg/L | <1.0              | 5 μg/L        | 70.2                          | 51.0       | 105        |
| EP075(SIM): Pentachlorophenol                    | 87-86-5                | 2    | μg/L | <2.0              | 10 μg/L       | 84.8                          | 10.0       | 95.0       |
| EP075(SIM)B: Polynuclear Aromatic Hydrocarbons   | (QCLot: 4859814)       |      |      |                   |               |                               |            |            |
| EP075(SIM): Naphthalene                          | 91-20-3                | 1    | μg/L | <1.0              | 5 μg/L        | 69.4                          | 50.0       | 94.0       |
| EP075(SIM): Acenaphthylene                       | 208-96-8               | 1    | μg/L | <1.0              | 5 μg/L        | 71.4                          | 63.6       | 114        |
| EP075(SIM): Acenaphthene                         | 83-32-9                | 1    | μg/L | <1.0              | 5 μg/L        | 71.4                          | 62.2       | 113        |
| EP075(SIM): Fluorene                             | 86-73-7                | 1    | μg/L | <1.0              | 5 μg/L        | 74.4                          | 63.9       | 115        |
| EP075(SIM): Phenanthrene                         | 85-01-8                | 1    | μg/L | <1.0              | 5 μg/L        | 100                           | 62.6       | 116        |
| EP075(SIM): Anthracene                           | 120-12-7               | 1    | μg/L | <1.0              | 5 μg/L        | 94.9                          | 64.3       | 116        |
| EP075(SIM): Fluoranthene                         | 206-44-0               | 1    | μg/L | <1.0              | 5 μg/L        | 100                           | 63.6       | 118        |
| EP075(SIM): Pyrene                               | 129-00-0               | 1    | μg/L | <1.0              | 5 μg/L        | 101                           | 63.1       | 118        |
| EP075(SIM): Benz(a)anthracene                    | 56-55-3                | 1    | μg/L | <1.0              | 5 μg/L        | 80.2                          | 64.1       | 117        |
| EP075(SIM): Chrysene                             | 218-01-9               | 1    | μg/L | <1.0              | 5 μg/L        | 84.4                          | 62.5       | 116        |
| EP075(SIM): Benzo(b+j)fluoranthene               | 205-99-2               | 1    | μg/L | <1.0              | 5 μg/L        | 91.4                          | 61.7       | 119        |
|                                                  | 205-82-3               |      |      |                   |               |                               |            |            |
| EP075(SIM): Benzo(k)fluoranthene                 | 207-08-9               | 1    | μg/L | <1.0              | 5 μg/L        | 72.8                          | 63.0       | 115        |
| EP075(SIM): Benzo(a)pyrene                       | 50-32-8                | 0.5  | μg/L | <0.5              | 5 μg/L        | 79.4                          | 63.3       | 117        |
| EP075(SIM): Indeno(1.2.3.cd)pyrene               | 193-39-5               | 1    | μg/L | <1.0              | 5 μg/L        | 81.2                          | 59.9       | 118        |
| EP075(SIM): Dibenz(a.h)anthracene                | 53-70-3                | 1    | μg/L | <1.0              | 5 μg/L        | 81.6                          | 61.2       | 117        |
| EP075(SIM): Benzo(g.h.i)perylene                 | 191-24-2               | 1    | μg/L | <1.0              | 5 μg/L        | 81.4                          | 59.1       | 118        |
| EP080/071: Total Petroleum Hydrocarbons (QCLot:  | 4859815)               |      |      |                   |               |                               |            |            |
| EP071: C10 - C14 Fraction                        |                        | 50   | μg/L | <50               | 400 μg/L      | 84.4                          | 53.7       | 97.0       |
| EP071: C15 - C28 Fraction                        |                        | 100  | μg/L | <100              | 600 μg/L      | 78.0                          | 63.3       | 107        |
| EP071: C29 - C36 Fraction                        |                        | 50   | μg/L | <50               | 400 μg/L      | 91.6                          | 58.3       | 120        |

Page : 9 of 11 Work Order : ES2304011

Client : SENVERSA PTY LTD
Project : S20102 Wetherill Park WME



| Sub-Matrix: WATER                                             |        |               |      | Method Blank (MB) | Laboratory Control Spike (LCS) Report |                    |            |            |  |  |
|---------------------------------------------------------------|--------|---------------|------|-------------------|---------------------------------------|--------------------|------------|------------|--|--|
|                                                               |        |               |      | Report            | Spike                                 | Spike Recovery (%) | Acceptable | Limits (%) |  |  |
| Method: Compound CAS                                          | Number | LOR           | Unit | Result            | Concentration                         | LCS                | Low        | High       |  |  |
| EP080/071: Total Petroleum Hydrocarbons (QCLot: 4860105)      |        |               |      |                   |                                       |                    |            |            |  |  |
| EP080: C6 - C9 Fraction                                       |        | 20            | μg/L | <20               | 260 μg/L                              | 98.9               | 75.0       | 127        |  |  |
| EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractio | ns (QC | Lot: 4859815) |      |                   |                                       |                    |            |            |  |  |
| EP071: >C10 - C16 Fraction                                    |        | 100           | μg/L | <100              | 500 μg/L                              | 83.4               | 53.9       | 95.5       |  |  |
| EP071: >C16 - C34 Fraction                                    |        | 100           | μg/L | <100              | 700 μg/L                              | 80.3               | 57.8       | 110        |  |  |
| EP071: >C34 - C40 Fraction                                    |        | 100           | μg/L | <100              | 300 μg/L                              | 93.6               | 50.5       | 115        |  |  |
| EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractio | ns (QC | Lot: 4860105) |      |                   |                                       |                    |            |            |  |  |
| EP080: C6 - C10 Fraction                                      | 6_C10  | 20            | μg/L | <20               | 310 μg/L                              | 101                | 75.0       | 127        |  |  |
| EP080: BTEXN (QCLot: 4860105)                                 |        |               |      |                   |                                       |                    |            |            |  |  |
| EP080: Benzene 7                                              | 1-43-2 | 1             | μg/L | <1                | 10 μg/L                               | 107                | 70.0       | 122        |  |  |
| EP080: Toluene 10                                             | 8-88-3 | 2             | μg/L | <2                | 10 μg/L                               | 108                | 69.0       | 123        |  |  |
| EP080: Ethylbenzene 10                                        | 0-41-4 | 2             | μg/L | <2                | 10 μg/L                               | 109                | 70.0       | 120        |  |  |
| EP080: meta- & para-Xylene 10                                 | 8-38-3 | 2             | μg/L | <2                | 10 μg/L                               | 104                | 69.0       | 121        |  |  |
| 10                                                            | 6-42-3 |               |      |                   |                                       |                    |            |            |  |  |
| EP080: ortho-Xylene                                           | 5-47-6 | 2             | μg/L | <2                | 10 μg/L                               | 106                | 72.0       | 122        |  |  |
| EP080: Naphthalene 9                                          | 1-20-3 | 5             | μg/L | <5                | 10 μg/L                               | 109                | 70.0       | 120        |  |  |

#### Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

| Sub-Matrix: WATER   | p-Matrix: WATER                                 |                                        |            |               | Matrix Spike (MS) Report |            |            |  |  |  |
|---------------------|-------------------------------------------------|----------------------------------------|------------|---------------|--------------------------|------------|------------|--|--|--|
|                     |                                                 |                                        |            | Spike         | SpikeRecovery(%)         | Acceptable | Limits (%) |  |  |  |
| aboratory sample ID | Sample ID                                       | Method: Compound                       | CAS Number | Concentration | MS                       | Low        | High       |  |  |  |
| EG005(ED093)F: [    | Dissolved Metals by ICP-AES (QCLot: 4859854)    |                                        |            |               |                          |            |            |  |  |  |
| ES2304011-007       | MW4                                             | EG005F: Manganese                      | 7439-96-5  | 1 mg/L        | # Not<br>Determined      | 70.0       | 130        |  |  |  |
| D041G: Sulfate (    | Turbidimetric) as SO4 2- by DA (QCLot: 4860151) |                                        |            |               |                          |            |            |  |  |  |
| ES2304009-005       | Anonymous                                       | ED041G: Sulfate as SO4 - Turbidimetric | 14808-79-8 | 10 mg/L       | 117                      | 70.0       | 130        |  |  |  |
| D045G: Chloride     | by Discrete Analyser (QCLot: 4860150)           |                                        |            |               |                          |            |            |  |  |  |
| ES2304009-005       | Anonymous                                       | ED045G: Chloride                       | 16887-00-6 | 50 mg/L       | 107                      | 70.0       | 130        |  |  |  |
| G020F: Dissolve     | d Metals by ICP-MS (QCLot: 4859851)             |                                        |            |               |                          |            |            |  |  |  |
| ES2304011-005       | MW2                                             | EG020A-F: Arsenic                      | 7440-38-2  | 1 mg/L        | 108                      | 70.0       | 130        |  |  |  |
|                     |                                                 | EG020A-F: Cadmium                      | 7440-43-9  | 0.25 mg/L     | 92.8                     | 70.0       | 130        |  |  |  |
|                     |                                                 | EG020A-F: Chromium                     | 7440-47-3  | 1 mg/L        | 93.8                     | 70.0       | 130        |  |  |  |
|                     |                                                 | EG020A-F: Copper                       | 7440-50-8  | 1 mg/L        | 101                      | 70.0       | 130        |  |  |  |
|                     | EG020A-F: Lead                                  | 7439-92-1                              | 1 mg/L     | 107           | 70.0                     | 130        |            |  |  |  |
|                     |                                                 | EG020A-F: Nickel                       | 7440-02-0  | 1 mg/L        | 101                      | 70.0       | 130        |  |  |  |

Page : 10 of 11 Work Order : ES2304011



| p-Matrix: <b>WATER</b> |                                                        |                                      |            |               | Matrix Spike (MS) Report |               |          |  |  |  |
|------------------------|--------------------------------------------------------|--------------------------------------|------------|---------------|--------------------------|---------------|----------|--|--|--|
|                        |                                                        |                                      |            | Spike         | SpikeRecovery(%)         | Acceptable Li | mits (%) |  |  |  |
| aboratory sample ID    | Sample ID                                              | Method: Compound                     | CAS Number | Concentration | MS                       | Low           | High     |  |  |  |
| G020F: Dissolve        | d Metals by ICP-MS (QCLot: 4859851) - continued        |                                      |            |               |                          |               |          |  |  |  |
| ES2304011-005          | MW2                                                    | EG020A-F: Zinc                       | 7440-66-6  | 1 mg/L        | 95.7                     | 70.0          | 130      |  |  |  |
| G035F: Dissolve        | d Mercury by FIMS (QCLot: 4859849)                     |                                      |            |               |                          |               |          |  |  |  |
| ES2304011-003          | QC301                                                  | EG035F: Mercury                      | 7439-97-6  | 0.01 mg/L     | 96.4                     | 70.0          | 130      |  |  |  |
| K040P: Fluoride        | by PC Titrator (QCLot: 4859908)                        |                                      |            |               |                          |               |          |  |  |  |
| ES2303799-001          | Anonymous                                              | EK040P: Fluoride                     | 16984-48-8 | 5 mg/L        | 93.2                     | 70.0          | 130      |  |  |  |
| K055G: Ammonia         | a as N by Discrete Analyser (QCLot: 4861210)           |                                      |            |               |                          |               |          |  |  |  |
| S2303838-001           | Anonymous                                              | EK055G: Ammonia as N                 | 7664-41-7  | 1 mg/L        | 118                      | 70.0          | 130      |  |  |  |
| K055G: Ammonia         | a as N by Discrete Analyser (QCLot: 4861212)           |                                      |            |               |                          |               |          |  |  |  |
| S2304011-008           | MW6                                                    | EK055G: Ammonia as N                 | 7664-41-7  | 1 mg/L        | 109                      | 70.0          | 130      |  |  |  |
| K057G: Nitrite as      | s N by Discrete Analyser (QCLot: 4860146)              |                                      |            |               |                          |               |          |  |  |  |
| ES2303855-001          | Anonymous                                              | EK057G: Nitrite as N                 | 14797-65-0 | 0.5 mg/L      | # Not                    | 70.0          | 130      |  |  |  |
|                        |                                                        |                                      |            |               | Determined               |               |          |  |  |  |
| K059G: Nitrite p       | us Nitrate as N (NOx) by Discrete Analyser (QCLot: 486 | 61209)                               |            |               |                          |               |          |  |  |  |
| S2303838-001           | Anonymous                                              | EK059G: Nitrite + Nitrate as N       |            | 0.5 mg/L      | 117                      | 70.0          | 130      |  |  |  |
| K059G: Nitrite p       | us Nitrate as N (NOx) by Discrete Analyser (QCLot: 486 | 61211)                               |            |               |                          |               |          |  |  |  |
| ES2304011-008          | MW6                                                    | EK059G: Nitrite + Nitrate as N       |            | 0.5 mg/L      | 93.2                     | 70.0          | 130      |  |  |  |
| K059G: Nitrite p       | us Nitrate as N (NOx) by Discrete Analyser (QCLot: 486 | 64095)                               |            |               |                          |               |          |  |  |  |
| /IE2300270-001         | Anonymous                                              | EK059G: Nitrite + Nitrate as N       |            | 0.5 mg/L      | 99.6                     | 70.0          | 130      |  |  |  |
| K061G: Total Kje       | Idahl Nitrogen By Discrete Analyser (QCLot: 4861208)   |                                      |            |               |                          |               |          |  |  |  |
| ES2304011-004          | MW1                                                    | EK061G: Total Kjeldahl Nitrogen as N |            | 25 mg/L       | 101                      | 70.0          | 130      |  |  |  |
| K061G: Total Kje       | Idahl Nitrogen By Discrete Analyser (QCLot: 4864092)   |                                      |            |               |                          |               |          |  |  |  |
| S2304009-001           | Anonymous                                              | EK061G: Total Kjeldahl Nitrogen as N |            | 5 mg/L        | 100                      | 70.0          | 130      |  |  |  |
| K067G: Total Pho       | osphorus as P by Discrete Analyser (QCLot: 4861207)    |                                      |            |               |                          |               |          |  |  |  |
| S2304011-004           | MW1                                                    | EK067G: Total Phosphorus as P        |            | 5 mg/L        | 99.5                     | 70.0          | 130      |  |  |  |
| K067G: Total Pho       | osphorus as P by Discrete Analyser (QCLot: 4864091)    |                                      |            |               |                          |               |          |  |  |  |
| S2304009-001           | Anonymous                                              | EK067G: Total Phosphorus as P        |            | 1 mg/L        | 95.6                     | 70.0          | 130      |  |  |  |
| K071G: Reactive        | Phosphorus as P by discrete analyser (QCLot: 4860147   | <u>'</u>                             |            |               |                          |               |          |  |  |  |
| S2303957-001           | Anonymous                                              | EK071G: Reactive Phosphorus as P     | 14265-44-2 | 0.5 mg/L      | 93.3                     | 70.0          | 130      |  |  |  |
| K071G: Reactive        | Phosphorus as P by discrete analyser (QCLot: 4860152   | 2)                                   |            |               |                          |               |          |  |  |  |
| ES2304011-008          | MW6                                                    | EK071G: Reactive Phosphorus as P     | 14265-44-2 | 0.5 mg/L      | 98.1                     | 70.0          | 130      |  |  |  |
| P080/071: Total F      | Petroleum Hydrocarbons (QCLot: 4860105)                |                                      |            |               |                          |               |          |  |  |  |
| S2303866-001           | Anonymous                                              | EP080: C6 - C9 Fraction              |            | 325 μg/L      | 80.0                     | 70.0          | 130      |  |  |  |
| P080/071: Total F      | Recoverable Hydrocarbons - NEPM 2013 Fractions (QCL    |                                      |            |               |                          |               |          |  |  |  |

Page : 11 of 11 Work Order : ES2304011



| Sub-Matrix: WATER    |                                                    |                            |            |               | Matrix Spike (MS) Report |            |            |  |  |  |
|----------------------|----------------------------------------------------|----------------------------|------------|---------------|--------------------------|------------|------------|--|--|--|
|                      |                                                    |                            |            | Spike         | SpikeRecovery(%)         | Acceptable | Limits (%) |  |  |  |
| Laboratory sample ID | Sample ID                                          | Method: Compound           | CAS Number | Concentration | MS                       | Low        | High       |  |  |  |
| EP080/071: Total I   | Recoverable Hydrocarbons - NEPM 2013 Fractions (QC | _ot: 4860105) - continued  |            |               |                          |            |            |  |  |  |
| ES2303866-001        | Anonymous                                          | EP080: C6 - C10 Fraction   | C6_C10     | 375 μg/L      | 81.9                     | 70.0       | 130        |  |  |  |
| EP080: BTEXN (C      | CLot: 4860105)                                     |                            |            |               |                          |            |            |  |  |  |
| ES2303866-001        | Anonymous                                          | EP080: Benzene             | 71-43-2    | 25 μg/L       | 81.6                     | 70.0       | 130        |  |  |  |
|                      |                                                    | EP080: Toluene             | 108-88-3   | 25 μg/L       | 83.9                     | 70.0       | 130        |  |  |  |
|                      |                                                    | EP080: Ethylbenzene        | 100-41-4   | 25 μg/L       | 87.4                     | 70.0       | 130        |  |  |  |
|                      |                                                    | EP080: meta- & para-Xylene | 108-38-3   | 25 μg/L       | 82.4                     | 70.0       | 130        |  |  |  |
|                      |                                                    |                            | 106-42-3   |               |                          |            |            |  |  |  |
|                      |                                                    | EP080: ortho-Xylene        | 95-47-6    | 25 μg/L       | 86.5                     | 70.0       | 130        |  |  |  |
|                      |                                                    | EP080: Naphthalene         | 91-20-3    | 25 μg/L       | 87.2                     | 70.0       | 130        |  |  |  |



#### **Chain of Custody Documentation**

| Senversa Pty                  | Ltd                                                              |                    |            | Laboratory:                       | ALS NSW                                      |                         |             |         |         |             |        | ,                                        | Analysis Requ | ired  |              |                                                                                        |
|-------------------------------|------------------------------------------------------------------|--------------------|------------|-----------------------------------|----------------------------------------------|-------------------------|-------------|---------|---------|-------------|--------|------------------------------------------|---------------|-------|--------------|----------------------------------------------------------------------------------------|
| www.senversa<br>ABN 89 132 23 | .com.au                                                          |                    |            | Address:<br>Contact:<br>Phone:    | Sample Receipt                               |                         | ,           |         |         |             |        |                                          |               |       |              | Comments: e.g. Highly contaminated sample; hazardous materials present; trac LORs etc. |
| Job Number:                   |                                                                  | \$20               | 102        | Purchase Order:                   |                                              |                         | METALS      |         |         |             |        |                                          |               |       |              |                                                                                        |
| Project Name                  |                                                                  | Wetherill F        | ark WME    | Quote No:                         |                                              |                         |             |         |         |             | _      |                                          |               |       |              |                                                                                        |
| Sampled By:                   |                                                                  | Bec Ch             | apple      | Turn Around Time: Standard 7 Days |                                              |                         | PAH         |         |         |             | MN     |                                          |               |       |              |                                                                                        |
| Project Manag                 | der:                                                             | Emma               | Walsh      | Page:                             | of 1                                         | TEX                     | TP)         |         | 0       | (FE AND MN) |        |                                          | 1             |       |              |                                                                                        |
|                               | Bec.Chapple@senversa.com.at Report To: Emma.Walsh@senversa.com.a |                    |            | Phone/Mobile:                     | 404011544                                    | (TRH/BTEX/PAH/8<br>OLS) | T-11 (TN, T | H (TDS) | H (TSS) | F (FE.      |        |                                          |               |       |              |                                                                                        |
|                               |                                                                  | Sample Information |            |                                   | Container Inf                                |                         | EN 27       | 7       | EA015H  | EA025H      | EG005F |                                          |               |       | HOLD         |                                                                                        |
| Lab ID                        | Sample ID                                                        | Matrix *           | Date       | Time                              | Type / Code                                  | Total Bottles           | 3 4         | z       | Ш       | Ш           | ш      |                                          |               |       | Ĭ            |                                                                                        |
| 1                             | SW1                                                              | W                  | 10/02/2023 | AM                                |                                              | 6                       | X           | X       | Х       | X           | X      |                                          |               |       |              |                                                                                        |
| 2                             | SW2                                                              | W                  | 10/02/2023 | AM                                |                                              | 6                       | X           | Х       | Х       | X           | X      |                                          |               |       |              |                                                                                        |
|                               |                                                                  |                    |            |                                   |                                              |                         |             |         |         |             |        |                                          |               |       |              |                                                                                        |
|                               |                                                                  |                    |            |                                   |                                              |                         |             |         |         |             |        |                                          |               | Syc   | dney<br>Nork | mental Division  Order Reference  2304342                                              |
|                               |                                                                  |                    |            |                                   |                                              |                         |             |         |         |             |        |                                          |               |       |              | U.Z. NACO BESSE MILITI                                                                 |
|                               |                                                                  |                    |            |                                   |                                              |                         |             |         |         |             |        | # 10 mm                                  |               |       |              |                                                                                        |
|                               |                                                                  |                    |            |                                   |                                              |                         |             |         |         |             |        |                                          |               | Telep | ohone :      | + 61-2-8784 8555                                                                       |
|                               |                                                                  |                    | ***        |                                   |                                              |                         |             |         | 1       |             |        |                                          |               | -     | 1            |                                                                                        |
| Total                         |                                                                  |                    |            |                                   |                                              | 12                      |             |         |         |             |        |                                          |               |       |              |                                                                                        |
|                               | est that proper field sar<br>s were used during the              |                    |            | Senversa standard pro             | cedures and/or project                       | Sampler Name:           |             | Bec     | Chapple |             | Signal | ure:                                     | /             |       | Date:        | 10/02/20                                                                               |
| Relinquished                  | Ву:                                                              |                    |            |                                   | Method of Shipment (if                       | applicable):            |             |         | Receiv  | red by:     | T      | Ap. S                                    | 6             |       |              | Date: 10/1/23                                                                          |
| Name/Signatu                  |                                                                  | Bec Chapple        |            | Date: 10/2/23                     | Carrier / Reference #:                       |                         |             |         | Name/   | Signatur    | e:     | /                                        |               |       |              | Date.                                                                                  |
| Of:                           |                                                                  |                    |            | Time: 9:15 AM                     | Date/Time:                                   |                         |             |         | Of:     |             |        | ,                                        |               |       |              | Time:                                                                                  |
| Name/Signatu                  | re:                                                              |                    |            | Date:                             | Carrier / Reference #:                       |                         |             |         | -       | Signatur    | e:     | ar-a-mana-mana-mana-mana-mana-mana-mana- |               |       |              | Date: 10:3er-                                                                          |
| Of:                           |                                                                  |                    |            | Time:                             | Date/Time:                                   |                         |             |         | Of:     |             |        |                                          |               |       |              | Time:                                                                                  |
| Name/Signatu                  | re:                                                              |                    |            | Date:                             | Carrier / Reference #:                       |                         |             |         | Name/   | Signatur    | e:     |                                          |               |       |              | Date:                                                                                  |
| 26                            |                                                                  |                    |            | Time:                             | Date/Time:<br>= Nitric Preserved ORC; SH = S |                         |             |         | Of:     |             |        |                                          |               |       |              | Time:                                                                                  |

Completed by: \_\_\_\_\_ Checked by: \_\_\_\_



# **CERTIFICATE OF ANALYSIS**

Work Order : **ES2304342** 

: SENVERSA PTY LTD

Contact : EMMA WALSH

Address : Level 24, 1 Market St, Sydney NSW 2000

SYDNEY NSW 2000

Telephone : 02 8252 0000

Project : S20102 Wetherill Park WME

Order number : ---C-O-C number : ----

Client

Sampler · BEC CHAPPLE

Site : ---

Quote number : EN/103/21

No. of samples received : 2
No. of samples analysed : 2

Page : 1 of 6

Laboratory : Environmental Division Sydney

Contact : Khaleda Ataei

Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

Telephone : + 61 2 8784 8555

Date Samples Received : 10-Feb-2023 10:30

Date Analysis Commenced : 13-Feb-2023

Issue Date : 16-Feb-2023 16:15



This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

#### Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Ankit Joshi Senior Chemist - Inorganics Sydney Inorganics, Smithfield, NSW Edwardy Fadjar Organic Coordinator Sydney Organics, Smithfield, NSW

Page : 2 of 6
Work Order : ES2304342

Client : SENVERSA PTY LTD
Project : S20102 Wetherill Park WME



#### **General Comments**

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contract for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.
- EP075 (SIM): Where reported, Benzo(a)pyrene Toxicity Equivalent Quotient (TEQ) per the NEPM (2013) is the sum total of the concentration of the eight carcinogenic PAHs multiplied by their Toxicity Equivalence Factor (TEF) relative to Benzo(a)pyrene. TEF values are provided in brackets as follows: Benz(a)anthracene (0.1), Chrysene (0.01), Benzo(b+j) & Benzo(k)fluoranthene (0.1), Benzo(a)pyrene (1.0), Indeno(1.2.3.cd)pyrene (0.1), Dibenz(a.h)anthracene (1.0), Benzo(q.h.i)perylene (0.01). Less than LOR results for 'TEQ Zero' are treated as zero.
- EP080: Where reported, Total Xylenes is the sum of the reported concentrations of m&p-Xylene and o-Xylene at or above the LOR.
- EP075(SIM): Where reported, Total Cresol is the sum of the reported concentrations of 2-Methylphenol and 3- & 4-Methylphenol at or above the LOR.

Page : 3 of 6
Work Order : ES2304342

Client : SENVERSA PTY LTD
Project : S20102 Wetherill Park WME



| Sub-Matrix: WATER (Matrix: WATER)    |                       |        | Sample ID      | SW1               | sw2               | <br> |  |
|--------------------------------------|-----------------------|--------|----------------|-------------------|-------------------|------|--|
|                                      |                       | Sampli | ng date / time | 10-Feb-2023 00:00 | 10-Feb-2023 00:00 | <br> |  |
| Compound                             | CAS Number            | LOR    | Unit           | ES2304342-001     | ES2304342-002     | <br> |  |
|                                      |                       |        |                | Result            | Result            | <br> |  |
| EA015: Total Dissolved Solids dried  | l at 180 ± 5 °C       |        |                |                   |                   |      |  |
| Total Dissolved Solids @180°C        |                       | 10     | mg/L           | 240               | 352               | <br> |  |
| EA025: Total Suspended Solids drie   | ed at 104 ± 2°C       |        |                |                   |                   |      |  |
| Suspended Solids (SS)                |                       | 5      | mg/L           | 86                | 69                | <br> |  |
| EG005(ED093)F: Dissolved Metals b    | y ICP-AES             |        |                |                   |                   |      |  |
| Iron                                 | 7439-89-6             | 0.05   | mg/L           | 0.06              | 0.06              | <br> |  |
| Manganese                            | 7439-96-5             | 0.01   | mg/L           | 0.01              | <0.01             | <br> |  |
| EG020F: Dissolved Metals by ICP-M    | S                     |        |                |                   |                   |      |  |
| Arsenic                              | 7440-38-2             | 0.001  | mg/L           | 0.001             | <0.001            | <br> |  |
| Cadmium                              | 7440-43-9             | 0.0001 | mg/L           | <0.0001           | <0.0001           | <br> |  |
| Chromium                             | 7440-47-3             | 0.001  | mg/L           | 0.002             | 0.002             | <br> |  |
| Copper                               | 7440-50-8             | 0.001  | mg/L           | 0.006             | 0.003             | <br> |  |
| Lead                                 | 7439-92-1             | 0.001  | mg/L           | <0.001            | <0.001            | <br> |  |
| Nickel                               | 7440-02-0             | 0.001  | mg/L           | 0.001             | 0.001             | <br> |  |
| Zinc                                 | 7440-66-6             | 0.005  | mg/L           | <0.005            | <0.005            | <br> |  |
| EG035F: Dissolved Mercury by FIMS    | S                     |        |                |                   |                   |      |  |
| Mercury                              | 7439-97-6             | 0.0001 | mg/L           | <0.0001           | <0.0001           | <br> |  |
| EK059G: Nitrite plus Nitrate as N (N | IOx) by Discrete Anal | yser   |                |                   |                   |      |  |
| Nitrite + Nitrate as N               |                       | 0.01   | mg/L           | 0.36              | 0.50              | <br> |  |
| EK061G: Total Kjeldahl Nitrogen By   | Discrete Analyser     |        |                |                   |                   |      |  |
| Total Kjeldahl Nitrogen as N         |                       | 0.1    | mg/L           | 0.3               | 1.0               | <br> |  |
| EK062G: Total Nitrogen as N (TKN +   | NOx) by Discrete An   | alvser |                |                   |                   |      |  |
| ^ Total Nitrogen as N                |                       | 0.1    | mg/L           | 0.7               | 1.5               | <br> |  |
| EK067G: Total Phosphorus as P by     | Discrete Analyser     |        |                |                   |                   |      |  |
| Total Phosphorus as P                |                       | 0.01   | mg/L           | 0.06              | 0.19              | <br> |  |
| EP075(SIM)A: Phenolic Compounds      |                       |        |                |                   |                   |      |  |
| Phenol                               | 108-95-2              | 1.0    | μg/L           | <1.0              | <1.0              | <br> |  |
| 2-Chlorophenol                       | 95-57-8               | 1.0    | μg/L           | <1.0              | <1.0              | <br> |  |
| 2-Methylphenol                       | 95-48-7               | 1.0    | μg/L           | <1.0              | <1.0              | <br> |  |
| 3- & 4-Methylphenol                  | 1319-77-3             | 2.0    | μg/L           | <2.0              | <2.0              | <br> |  |
| 2-Nitrophenol                        | 88-75-5               | 1.0    | μg/L           | <1.0              | <1.0              | <br> |  |
| 2.4-Dimethylphenol                   | 105-67-9              | 1.0    | μg/L           | <1.0              | <1.0              | <br> |  |
| 2.4-Dichlorophenol                   | 120-83-2              | 1.0    | μg/L           | <1.0              | <1.0              | <br> |  |
| 2.6-Dichlorophenol                   | 87-65-0               | 1.0    | μg/L           | <1.0              | <1.0              | <br> |  |
| 4-Chloro-3-methylphenol              | 59-50-7               | 1.0    | μg/L           | <1.0              | <1.0              | <br> |  |

Page : 4 of 6
Work Order : ES2304342

Client : SENVERSA PTY LTD
Project : S20102 Wetherill Park WME



| Sub-Matrix: WATER (Matrix: WATER)      |                            |            | Sample ID      | SW1               | sw2               | <br> |  |
|----------------------------------------|----------------------------|------------|----------------|-------------------|-------------------|------|--|
|                                        |                            | Sampli     | ng date / time | 10-Feb-2023 00:00 | 10-Feb-2023 00:00 | <br> |  |
| Compound                               | CAS Number                 | LOR        | Unit           | ES2304342-001     | ES2304342-002     | <br> |  |
|                                        |                            |            |                | Result            | Result            | <br> |  |
| EP075(SIM)A: Phenolic Compounds        | s - Continued              |            |                |                   |                   |      |  |
| 2.4.6-Trichlorophenol                  | 88-06-2                    | 1.0        | μg/L           | <1.0              | <1.0              | <br> |  |
| 2.4.5-Trichlorophenol                  | 95-95-4                    | 1.0        | μg/L           | <1.0              | <1.0              | <br> |  |
| Pentachlorophenol                      | 87-86-5                    | 2.0        | μg/L           | <2.0              | <2.0              | <br> |  |
| EP075(SIM)B: Polynuclear Aromatic      | Hvdrocarbons               |            |                |                   |                   |      |  |
| Naphthalene                            | 91-20-3                    | 1.0        | μg/L           | <1.0              | <1.0              | <br> |  |
| Acenaphthylene                         | 208-96-8                   | 1.0        | μg/L           | <1.0              | <1.0              | <br> |  |
| Acenaphthene                           | 83-32-9                    | 1.0        | μg/L           | <1.0              | <1.0              | <br> |  |
| Fluorene                               | 86-73-7                    | 1.0        | μg/L           | <1.0              | <1.0              | <br> |  |
| Phenanthrene                           | 85-01-8                    | 1.0        | μg/L           | <1.0              | <1.0              | <br> |  |
| Anthracene                             | 120-12-7                   | 1.0        | μg/L           | <1.0              | <1.0              | <br> |  |
| Fluoranthene                           | 206-44-0                   | 1.0        | μg/L           | <1.0              | <1.0              | <br> |  |
| Pyrene                                 | 129-00-0                   | 1.0        | μg/L           | <1.0              | <1.0              | <br> |  |
| Benz(a)anthracene                      | 56-55-3                    | 1.0        | μg/L           | <1.0              | <1.0              | <br> |  |
| Chrysene                               | 218-01-9                   | 1.0        | μg/L           | <1.0              | <1.0              | <br> |  |
| Benzo(b+j)fluoranthene                 | 205-99-2 205-82-3          | 1.0        | μg/L           | <1.0              | <1.0              | <br> |  |
| Benzo(k)fluoranthene                   | 207-08-9                   | 1.0        | μg/L           | <1.0              | <1.0              | <br> |  |
| Benzo(a)pyrene                         | 50-32-8                    | 0.5        | μg/L           | <0.5              | <0.5              | <br> |  |
| Indeno(1.2.3.cd)pyrene                 | 193-39-5                   | 1.0        | μg/L           | <1.0              | <1.0              | <br> |  |
| Dibenz(a.h)anthracene                  | 53-70-3                    | 1.0        | μg/L           | <1.0              | <1.0              | <br> |  |
| Benzo(g.h.i)perylene                   | 191-24-2                   | 1.0        | μg/L           | <1.0              | <1.0              | <br> |  |
| ^ Sum of polycyclic aromatic hydrocarb | ons                        | 0.5        | μg/L           | <0.5              | <0.5              | <br> |  |
| ^ Benzo(a)pyrene TEQ (zero)            |                            | 0.5        | μg/L           | <0.5              | <0.5              | <br> |  |
| EP080/071: Total Petroleum Hydroc      | arbons                     |            |                |                   |                   |      |  |
| C6 - C9 Fraction                       |                            | 20         | μg/L           | <20               | <20               | <br> |  |
| C10 - C14 Fraction                     |                            | 50         | μg/L           | <50               | <50               | <br> |  |
| C15 - C28 Fraction                     |                            | 100        | μg/L           | <100              | <100              | <br> |  |
| C29 - C36 Fraction                     |                            | 50         | μg/L           | <50               | <50               | <br> |  |
| ^ C10 - C36 Fraction (sum)             |                            | 50         | μg/L           | <50               | <50               | <br> |  |
| EP080/071: Total Recoverable Hydro     | ocarbons - NEPM <u>201</u> | 3 Fraction | ns             |                   |                   |      |  |
| C6 - C10 Fraction                      | C6_C10                     | 20         | μg/L           | <20               | <20               | <br> |  |
| ^ C6 - C10 Fraction minus BTEX (F1)    | C6_C10-BTEX                | 20         | μg/L           | <20               | <20               | <br> |  |
| >C10 - C16 Fraction                    |                            | 100        | μg/L           | <100              | <100              | <br> |  |
| >C16 - C34 Fraction                    |                            | 100        | μg/L           | <100              | <100              | <br> |  |

Page : 5 of 6
Work Order : ES2304342

Client : SENVERSA PTY LTD
Project : S20102 Wetherill Park WME



| Sub-Matrix: WATER (Matrix: WATER)       |                   |           | Sample ID       | SW1               | sw2               | <br> |  |
|-----------------------------------------|-------------------|-----------|-----------------|-------------------|-------------------|------|--|
|                                         |                   | Sampli    | ing date / time | 10-Feb-2023 00:00 | 10-Feb-2023 00:00 | <br> |  |
| Compound                                | CAS Number        | LOR       | Unit            | ES2304342-001     | ES2304342-002     | <br> |  |
|                                         |                   |           |                 | Result            | Result            | <br> |  |
| EP080/071: Total Recoverable Hydroca    | arbons - NEPM 201 | 3 Fractio | ns - Continued  |                   |                   |      |  |
| >C34 - C40 Fraction                     |                   | 100       | μg/L            | <100              | <100              | <br> |  |
| ^ >C10 - C40 Fraction (sum)             |                   | 100       | μg/L            | <100              | <100              | <br> |  |
| ^ >C10 - C16 Fraction minus Naphthalene |                   | 100       | μg/L            | <100              | <100              | <br> |  |
| (F2)                                    |                   |           |                 |                   |                   |      |  |
| EP080: BTEXN                            |                   |           |                 |                   |                   |      |  |
| Benzene                                 | 71-43-2           | 1         | μg/L            | <1                | <1                | <br> |  |
| Toluene                                 | 108-88-3          | 2         | μg/L            | <2                | <2                | <br> |  |
| Ethylbenzene                            | 100-41-4          | 2         | μg/L            | <2                | <2                | <br> |  |
| meta- & para-Xylene                     | 108-38-3 106-42-3 | 2         | μg/L            | <2                | <2                | <br> |  |
| ortho-Xylene                            | 95-47-6           | 2         | μg/L            | <2                | <2                | <br> |  |
| ^ Total Xylenes                         |                   | 2         | μg/L            | <2                | <2                | <br> |  |
| ^ Sum of BTEX                           |                   | 1         | μg/L            | <1                | <1                | <br> |  |
| Naphthalene                             | 91-20-3           | 5         | μg/L            | <5                | <5                | <br> |  |
| EP075(SIM)S: Phenolic Compound Su       | rrogates          |           |                 |                   |                   |      |  |
| Phenol-d6                               | 13127-88-3        | 1.0       | %               | 30.1              | 26.2              | <br> |  |
| 2-Chlorophenol-D4                       | 93951-73-6        | 1.0       | %               | 59.0              | 53.2              | <br> |  |
| 2.4.6-Tribromophenol                    | 118-79-6          | 1.0       | %               | 55.7              | 58.8              | <br> |  |
| EP075(SIM)T: PAH Surrogates             |                   |           |                 |                   |                   |      |  |
| 2-Fluorobiphenyl                        | 321-60-8          | 1.0       | %               | 65.1              | 62.5              | <br> |  |
| Anthracene-d10                          | 1719-06-8         | 1.0       | %               | 74.7              | 79.4              | <br> |  |
| 4-Terphenyl-d14                         | 1718-51-0         | 1.0       | %               | 68.6              | 85.7              | <br> |  |
| EP080S: TPH(V)/BTEX Surrogates          |                   |           |                 |                   |                   |      |  |
| 1.2-Dichloroethane-D4                   | 17060-07-0        | 2         | %               | 132               | 117               | <br> |  |
| Toluene-D8                              | 2037-26-5         | 2         | %               | 124               | 113               | <br> |  |
| 4-Bromofluorobenzene                    | 460-00-4          | 2         | %               | 120               | 106               | <br> |  |

Page : 6 of 6
Work Order : ES2304342

Client : SENVERSA PTY LTD
Project : S20102 Wetherill Park WME

# ALS

# Surrogate Control Limits

| Sub-Matrix: WATER                         |            | Recovery | Limits (%) |
|-------------------------------------------|------------|----------|------------|
| Compound                                  | CAS Number | Low      | High       |
| EP075(SIM)S: Phenolic Compound Surrogates |            |          |            |
| Phenol-d6                                 | 13127-88-3 | 10       | 44         |
| 2-Chlorophenol-D4                         | 93951-73-6 | 14       | 94         |
| 2.4.6-Tribromophenol                      | 118-79-6   | 17       | 125        |
| EP075(SIM)T: PAH Surrogates               |            |          |            |
| 2-Fluorobiphenyl                          | 321-60-8   | 20       | 104        |
| Anthracene-d10                            | 1719-06-8  | 27       | 113        |
| 4-Terphenyl-d14                           | 1718-51-0  | 32       | 112        |
| EP080S: TPH(V)/BTEX Surrogates            |            |          |            |
| 1.2-Dichloroethane-D4                     | 17060-07-0 | 71       | 137        |
| Toluene-D8                                | 2037-26-5  | 79       | 131        |
| 4-Bromofluorobenzene                      | 460-00-4   | 70       | 128        |



# QA/QC Compliance Assessment to assist with Quality Review

**Work Order** : **ES2304342** Page : 1 of 7

Client : SENVERSA PTY LTD Laboratory : Environmental Division Sydney

Contact : EMMA WALSH Telephone : + 61 2 8784 8555
Project : S20102 Wetherill Park WME Date Samples Received : 10-Feb-2023

Site : --- Issue Date : 16-Feb-2023
Sampler : BEC CHAPPLE No. of samples received : 2

Order number : --- No. of samples analysed : 2

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

# **Summary of Outliers**

#### **Outliers: Quality Control Samples**

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- NO Duplicate outliers occur.
- NO Laboratory Control outliers occur.
- NO Matrix Spike outliers occur.
- For all regular sample matrices, NO surrogate recovery outliers occur.

## **Outliers: Analysis Holding Time Compliance**

NO Analysis Holding Time Outliers exist.

## **Outliers : Frequency of Quality Control Samples**

Quality Control Sample Frequency Outliers exist - please see following pages for full details.

Page : 2 of 7
Work Order : ES2304342

 Client
 : SENVERSA PTY LTD

 Project
 : S20102 Wetherill Park WME



#### **Outliers: Frequency of Quality Control Samples**

Matrix: WATER

| Quality Control Sample Type | Co | ount    | Rate   | e (%)    | Quality Control Specification  |
|-----------------------------|----|---------|--------|----------|--------------------------------|
| Method                      | QC | Regular | Actual | Expected |                                |
| Laboratory Duplicates (DUP) |    |         |        |          |                                |
| PAH/Phenois (GC/MS - SIM)   | 0  | 2       | 0.00   | 10.00    | NEPM 2013 B3 & ALS QC Standard |
| TRH - Semivolatile Fraction | 0  | 5       | 0.00   | 10.00    | NEPM 2013 B3 & ALS QC Standard |
| Matrix Spikes (MS)          |    |         |        |          |                                |
| PAH/Phenois (GC/MS - SIM)   | 0  | 2       | 0.00   | 5.00     | NEPM 2013 B3 & ALS QC Standard |
| TRH - Semivolatile Fraction | 0  | 5       | 0.00   | 5.00     | NEPM 2013 B3 & ALS QC Standard |

#### **Analysis Holding Time Compliance**

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive <u>or</u> Vinyl Chloride and Styrene are not key analytes of interest/concern.

| Matrix: WATER                                   |                      |             |                |                        | Evaluation | ı: 🗴 = Holding time | breach ; ✓ = Withi | n holding time |
|-------------------------------------------------|----------------------|-------------|----------------|------------------------|------------|---------------------|--------------------|----------------|
| Method                                          |                      | Sample Date | Ex             | traction / Preparation |            |                     | Analysis           |                |
| Container / Client Sample ID(s)                 |                      |             | Date extracted | Due for extraction     | Evaluation | Date analysed       | Due for analysis   | Evaluation     |
| EA015: Total Dissolved Solids dried at 180      | 0 ± 5 °C             |             |                |                        |            |                     |                    |                |
| Clear Plastic Bottle - Natural (EA015H)         |                      |             |                |                        |            |                     |                    |                |
| SW1,                                            | sw2                  | 10-Feb-2023 |                |                        |            | 14-Feb-2023         | 17-Feb-2023        | ✓              |
| EA025: Total Suspended Solids dried at 1        | 04 ± 2°C             |             |                |                        |            |                     |                    |                |
| Clear Plastic Bottle - Natural (EA025H)         |                      |             |                |                        |            |                     |                    |                |
| SW1,                                            | sw2                  | 10-Feb-2023 |                |                        |            | 14-Feb-2023         | 17-Feb-2023        | ✓              |
| EG005(ED093)F: Dissolved Metals by ICP-         | -AES                 |             |                |                        |            |                     |                    |                |
| Clear Plastic Bottle - Nitric Acid; Filtered (E | EG005F)              |             |                |                        |            |                     |                    |                |
| SW1,                                            | sw2                  | 10-Feb-2023 |                |                        |            | 16-Feb-2023         | 09-Aug-2023        | ✓              |
| EG020F: Dissolved Metals by ICP-MS              |                      |             |                |                        |            |                     |                    |                |
| Clear Plastic Bottle - Nitric Acid; Filtered (E | EG020A-F)            |             |                |                        |            |                     |                    |                |
| SW1,                                            | sw2                  | 10-Feb-2023 |                |                        |            | 15-Feb-2023         | 09-Aug-2023        | ✓              |
| EG035F: Dissolved Mercury by FIMS               |                      |             |                |                        |            |                     |                    |                |
| Clear Plastic Bottle - Nitric Acid; Filtered (E | EG035F)              |             |                |                        |            |                     |                    |                |
| SW1,                                            | sw2                  | 10-Feb-2023 |                |                        |            | 16-Feb-2023         | 10-Mar-2023        | ✓              |
| EK059G: Nitrite plus Nitrate as N (NOx) b       | oy Discrete Analyser |             |                |                        |            |                     |                    |                |
| Clear Plastic Bottle - Sulfuric Acid (EK0590    | G)                   |             |                |                        |            |                     |                    |                |
| SW1,                                            | sw2                  | 10-Feb-2023 |                |                        |            | 15-Feb-2023         | 10-Mar-2023        | ✓              |
| EK061G: Total Kjeldahl Nitrogen By Discre       | rete Analyser        |             |                |                        |            |                     |                    |                |
| Clear Plastic Bottle - Sulfuric Acid (EK0610    | G)                   |             |                |                        |            |                     |                    |                |
| SW1,                                            | sw2                  | 10-Feb-2023 | 14-Feb-2023    | 10-Mar-2023            | ✓          | 15-Feb-2023         | 10-Mar-2023        | ✓              |

Page : 3 of 7
Work Order : ES2304342

Client : SENVERSA PTY LTD
Project : S20102 Wetherill Park WME



#### Matrix: WATER

Evaluation: × = Holding time breach; ✓ = Within holding time.

| Maurx: WATER                                        |                  |              |                |                        | Evaluation | i. 🔻 = Holding time | breach, V = With | n nolaling tin |
|-----------------------------------------------------|------------------|--------------|----------------|------------------------|------------|---------------------|------------------|----------------|
| Method                                              |                  | Sample Date  | Ex             | traction / Preparation |            |                     | Analysis         |                |
| Container / Client Sample ID(s)                     |                  |              | Date extracted | Due for extraction     | Evaluation | Date analysed       | Due for analysis | Evaluation     |
| EK067G: Total Phosphorus as P by Discrete Analyse   | er er            |              |                |                        |            |                     |                  |                |
| Clear Plastic Bottle - Sulfuric Acid (EK067G)       |                  |              |                |                        |            |                     |                  |                |
| SW1,                                                | sw2              | 10-Feb-2023  | 14-Feb-2023    | 10-Mar-2023            | ✓          | 15-Feb-2023         | 10-Mar-2023      | ✓              |
| EP075(SIM)A: Phenolic Compounds                     |                  |              |                |                        |            |                     |                  |                |
| Amber Glass Bottle - Unpreserved (EP075(SIM))       |                  |              |                |                        |            |                     |                  |                |
| SW1,                                                | sw2              | 10-Feb-2023  | 13-Feb-2023    | 17-Feb-2023            | ✓          | 14-Feb-2023         | 25-Mar-2023      | ✓              |
| EP075(SIM)B: Polynuclear Aromatic Hydrocarbons      |                  |              |                |                        |            |                     |                  |                |
| Amber Glass Bottle - Unpreserved (EP075(SIM))       |                  |              |                | 47.5.1.0000            |            |                     | 05.14            |                |
| SW1,                                                | sw2              | 10-Feb-2023  | 13-Feb-2023    | 17-Feb-2023            | ✓          | 14-Feb-2023         | 25-Mar-2023      | ✓              |
| EP080/071: Total Petroleum Hydrocarbons             |                  |              |                |                        |            |                     |                  |                |
| Amber Glass Bottle - Unpreserved (EP071)            | _                | 40.5.1.0000  | 40 5 1 0000    | 47 F. b. 0000          |            | 44.5.1.0000         | 05.140000        |                |
| SW1,                                                | sw2              | 10-Feb-2023  | 13-Feb-2023    | 17-Feb-2023            | ✓          | 14-Feb-2023         | 25-Mar-2023      | ✓              |
| Amber VOC Vial - Sulfuric Acid (EP080)<br>SW1       |                  | 10-Feb-2023  | 14-Feb-2023    | 24-Feb-2023            | 1          | 14-Feb-2023         | 24-Feb-2023      | 1              |
| Amber VOC Vial - Sulfuric Acid (EP080)              |                  | 10.100 2020  |                | 2110020                | <u> </u>   |                     | 21100200         |                |
| sw2                                                 |                  | 10-Feb-2023  | 14-Feb-2023    | 24-Feb-2023            | 1          | 15-Feb-2023         | 24-Feb-2023      | 1              |
| EP080/071: Total Recoverable Hydrocarbons - NEPN    | 1 2013 Fractions |              |                |                        |            |                     |                  |                |
| Amber Glass Bottle - Unpreserved (EP071)            |                  |              |                |                        |            |                     |                  |                |
| SW1,                                                | sw2              | 10-Feb-2023  | 13-Feb-2023    | 17-Feb-2023            | ✓          | 14-Feb-2023         | 25-Mar-2023      | ✓              |
| Amber VOC Vial - Sulfuric Acid (EP080)              |                  |              |                | 04 5-1-0000            |            |                     | 04 5-1-0000      |                |
| SW1                                                 |                  | 10-Feb-2023  | 14-Feb-2023    | 24-Feb-2023            | ✓          | 14-Feb-2023         | 24-Feb-2023      | ✓              |
| Amber VOC Vial - Sulfuric Acid (EP080)<br>sw2       |                  | 10-Feb-2023  | 14-Feb-2023    | 24-Feb-2023            | 1          | 15-Feb-2023         | 24-Feb-2023      | 1              |
|                                                     |                  | 10-1 05-2020 | 14-1 05-2020   | 211002020              | <b>V</b>   | 10-1 05-2020        | 211 05 2020      | <u> </u>       |
| EP080: BTEXN Amber VOC Vial - Sulfuric Acid (EP080) |                  |              |                |                        |            |                     |                  |                |
| SW1                                                 |                  | 10-Feb-2023  | 14-Feb-2023    | 24-Feb-2023            | 1          | 14-Feb-2023         | 24-Feb-2023      | <b>1</b>       |
| Amber VOC Vial - Sulfuric Acid (EP080)              |                  |              |                |                        | =          |                     |                  | •              |
| sw2                                                 |                  | 10-Feb-2023  | 14-Feb-2023    | 24-Feb-2023            | 1          | 15-Feb-2023         | 24-Feb-2023      | <b>✓</b>       |

Page : 4 of 7
Work Order : ES2304342

Client : SENVERSA PTY LTD
Project : S20102 Wetherill Park WME



# **Quality Control Parameter Frequency Compliance**

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

| Quality Control Sample Type                         |            | C  | ount    |        | Rate (%) |            | Quality Control Specification  |
|-----------------------------------------------------|------------|----|---------|--------|----------|------------|--------------------------------|
| Analytical Methods                                  | Method     | OC | Regular | Actual | Expected | Evaluation |                                |
| aboratory Duplicates (DUP)                          |            |    |         |        |          |            |                                |
| Dissolved Mercury by FIMS                           | EG035F     | 2  | 19      | 10.53  | 10.00    |            | NEPM 2013 B3 & ALS QC Standard |
| Dissolved Metals by ICP-AES                         | EG005F     | 1  | 2       | 50.00  | 10.00    | <b>√</b>   | NEPM 2013 B3 & ALS QC Standard |
| Dissolved Metals by ICP-MS - Suite A                | EG020A-F   | 2  | 20      | 10.00  | 10.00    | <b>√</b>   | NEPM 2013 B3 & ALS QC Standard |
| Nitrite and Nitrate as N (NOx) by Discrete Analyser | EK059G     | 2  | 16      | 12.50  | 10.00    | 1          | NEPM 2013 B3 & ALS QC Standard |
| PAH/Phenols (GC/MS - SIM)                           | EP075(SIM) | 0  | 2       | 0.00   | 10.00    | x          | NEPM 2013 B3 & ALS QC Standard |
| Suspended Solids (High Level)                       | EA025H     | 2  | 20      | 10.00  | 10.00    | ✓          | NEPM 2013 B3 & ALS QC Standard |
| otal Dissolved Solids (High Level)                  | EA015H     | 2  | 20      | 10.00  | 10.00    | ✓          | NEPM 2013 B3 & ALS QC Standard |
| otal Kjeldahl Nitrogen as N By Discrete Analyser    | EK061G     | 2  | 17      | 11.76  | 10.00    | ✓          | NEPM 2013 B3 & ALS QC Standard |
| otal Phosphorus as P By Discrete Analyser           | EK067G     | 2  | 16      | 12.50  | 10.00    | ✓          | NEPM 2013 B3 & ALS QC Standard |
| TRH - Semivolatile Fraction                         | EP071      | 0  | 5       | 0.00   | 10.00    | se         | NEPM 2013 B3 & ALS QC Standard |
| FRH Volatiles/BTEX                                  | EP080      | 2  | 17      | 11.76  | 10.00    | ✓          | NEPM 2013 B3 & ALS QC Standard |
| aboratory Control Samples (LCS)                     |            |    |         |        |          |            |                                |
| Dissolved Mercury by FIMS                           | EG035F     | 1  | 19      | 5.26   | 5.00     | 1          | NEPM 2013 B3 & ALS QC Standard |
| Dissolved Metals by ICP-AES                         | EG005F     | 1  | 2       | 50.00  | 5.00     | 1          | NEPM 2013 B3 & ALS QC Standard |
| Dissolved Metals by ICP-MS - Suite A                | EG020A-F   | 1  | 20      | 5.00   | 5.00     | ✓          | NEPM 2013 B3 & ALS QC Standard |
| Nitrite and Nitrate as N (NOx) by Discrete Analyser | EK059G     | 1  | 16      | 6.25   | 5.00     | ✓          | NEPM 2013 B3 & ALS QC Standard |
| PAH/Phenols (GC/MS - SIM)                           | EP075(SIM) | 1  | 2       | 50.00  | 5.00     | ✓          | NEPM 2013 B3 & ALS QC Standard |
| Suspended Solids (High Level)                       | EA025H     | 3  | 20      | 15.00  | 15.00    | ✓          | NEPM 2013 B3 & ALS QC Standard |
| Total Dissolved Solids (High Level)                 | EA015H     | 3  | 20      | 15.00  | 15.00    | ✓          | NEPM 2013 B3 & ALS QC Standard |
| Total Kjeldahl Nitrogen as N By Discrete Analyser   | EK061G     | 3  | 17      | 17.65  | 15.00    | ✓          | NEPM 2013 B3 & ALS QC Standard |
| otal Phosphorus as P By Discrete Analyser           | EK067G     | 3  | 16      | 18.75  | 15.00    | ✓          | NEPM 2013 B3 & ALS QC Standard |
| FRH - Semivolatile Fraction                         | EP071      | 1  | 5       | 20.00  | 5.00     | ✓          | NEPM 2013 B3 & ALS QC Standard |
| FRH Volatiles/BTEX                                  | EP080      | 1  | 17      | 5.88   | 5.00     | ✓          | NEPM 2013 B3 & ALS QC Standard |
| Method Blanks (MB)                                  |            |    |         |        |          |            |                                |
| Dissolved Mercury by FIMS                           | EG035F     | 1  | 19      | 5.26   | 5.00     | ✓          | NEPM 2013 B3 & ALS QC Standard |
| Dissolved Metals by ICP-AES                         | EG005F     | 1  | 2       | 50.00  | 5.00     | ✓          | NEPM 2013 B3 & ALS QC Standard |
| Dissolved Metals by ICP-MS - Suite A                | EG020A-F   | 1  | 20      | 5.00   | 5.00     | ✓          | NEPM 2013 B3 & ALS QC Standard |
| Nitrite and Nitrate as N (NOx) by Discrete Analyser | EK059G     | 1  | 16      | 6.25   | 5.00     | ✓          | NEPM 2013 B3 & ALS QC Standard |
| PAH/Phenols (GC/MS - SIM)                           | EP075(SIM) | 1  | 2       | 50.00  | 5.00     | ✓          | NEPM 2013 B3 & ALS QC Standard |
| Suspended Solids (High Level)                       | EA025H     | 1  | 20      | 5.00   | 5.00     | ✓          | NEPM 2013 B3 & ALS QC Standard |
| otal Dissolved Solids (High Level)                  | EA015H     | 1  | 20      | 5.00   | 5.00     | ✓          | NEPM 2013 B3 & ALS QC Standard |
| otal Kjeldahl Nitrogen as N By Discrete Analyser    | EK061G     | 1  | 17      | 5.88   | 5.00     | ✓          | NEPM 2013 B3 & ALS QC Standard |
| Total Phosphorus as P By Discrete Analyser          | EK067G     | 1  | 16      | 6.25   | 5.00     | ✓          | NEPM 2013 B3 & ALS QC Standard |
| FRH - Semivolatile Fraction                         | EP071      | 1  | 5       | 20.00  | 5.00     | ✓          | NEPM 2013 B3 & ALS QC Standard |
| TRH Volatiles/BTEX                                  | EP080      | 1  | 17      | 5.88   | 5.00     | ✓          | NEPM 2013 B3 & ALS QC Standard |

Page : 5 of 7
Work Order : ES2304342

Client : SENVERSA PTY LTD
Project : S20102 Wetherill Park WME



#### Matrix: WATER Evaluation: \* = Quality Control frequency not within specification; \* = Quality Control frequency within specification. Quality Control Sample Type Count Rate (%) Quality Control Specification Evaluation Method QC Analytical Methods Regular Actual Expected Matrix Spikes (MS) - Continued Dissolved Mercury by FIMS 1 19 5.26 5.00 NEPM 2013 B3 & ALS QC Standard EG035F Dissolved Metals by ICP-AES 1 2 NEPM 2013 B3 & ALS QC Standard 50.00 5.00 1 EG005F Dissolved Metals by ICP-MS - Suite A 1 20 EG020A-F 5.00 5.00 1 NEPM 2013 B3 & ALS QC Standard Nitrite and Nitrate as N (NOx) by Discrete Analyser 1 16 6.25 5.00 NEPM 2013 B3 & ALS QC Standard EK059G 1 2 PAH/Phenols (GC/MS - SIM) 0 EP075(SIM) 0.00 5.00 NEPM 2013 B3 & ALS QC Standard × Total Kjeldahl Nitrogen as N By Discrete Analyser 1 17 5.88 NEPM 2013 B3 & ALS QC Standard 5.00 EK061G 1 Total Phosphorus as P By Discrete Analyser 1 16 6.25 5.00 1 NEPM 2013 B3 & ALS QC Standard EK067G TRH - Semivolatile Fraction 0 5 NEPM 2013 B3 & ALS QC Standard 0.00 5.00 EP071 × TRH Volatiles/BTEX 1 17 NEPM 2013 B3 & ALS QC Standard EP080 5.88 5.00 1

Page : 6 of 7
Work Order : ES2304342

Client : SENVERSA PTY LTD
Project : S20102 Wetherill Park WME



# **Brief Method Summaries**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

| Analytical Methods                                      | Method   | Matrix | Method Descriptions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|---------------------------------------------------------|----------|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Total Dissolved Solids (High Level)                     | EA015H   | WATER  | In house: Referenced to APHA 2540C. A gravimetric procedure that determines the amount of `filterable` residue in an aqueous sample. A well-mixed sample is filtered through a glass fibre filter (1.2um). The filtrate is evaporated to dryness and dried to constant weight at 180+/-5C. This method is compliant with NEPM Schedule B(3)                                                                                                                                                                                                                   |
| Suspended Solids (High Level)                           | EA025H   | WATER  | In house: Referenced to APHA 2540D. A gravimetric procedure employed to determine the amount of 'non-filterable' residue in a aqueous sample. The prescribed GFC (1.2um) filter is rinsed with deionised water, oven dried and weighed prior to analysis. A well-mixed sample is filtered through a glass fibre filter (1.2um). The residue on the filter paper is dried at 104+/-2C. This method is compliant with NEPM Schedule B(3)                                                                                                                        |
| Dissolved Metals by ICP-AES                             | EG005F   | WATER  | In house: Referenced to APHA 3120; USEPA SW 846 - 6010. The ICPAES technique ionises the 0.45µm filtered samples, emitting a characteristic spectrum which is compared against matrix matched standards. This method is compliant with NEPM Schedule B(3).                                                                                                                                                                                                                                                                                                    |
| Dissolved Metals by ICP-MS - Suite A                    | EG020A-F | WATER  | In house: Referenced to APHA 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020. Samples are 0.45µm filtered prior to analysis. The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.                                                                                                                                         |
| Dissolved Mercury by FIMS                               | EG035F   | WATER  | In house: Referenced to APHA 3112 Hg - B (Flow-injection (SnCl2)(Cold Vapour generation) AAS) Samples are 0.45µm filtered prior to analysis. FIM-AAS is an automated flameless atomic absorption technique. A bromate/bromide reagent is used to oxidise any organic mercury compounds in the filtered sample. The ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM Schedule B(3). |
| Nitrite and Nitrate as N (NOx) by Discrete Analyser     | EK059G   | WATER  | In house: Referenced to APHA 4500-NO3- F. Combined oxidised Nitrogen (NO2+NO3) is determined by Chemical Reduction and direct colourimetry by Discrete Analyser. This method is compliant with NEPM Schedule B(3)                                                                                                                                                                                                                                                                                                                                             |
| Total Kjeldahl Nitrogen as N By Discrete<br>Analyser    | EK061G   | WATER  | In house: Referenced to APHA 4500-Norg D (In house). An aliquot of sample is digested using a high temperature Kjeldahl digestion to convert nitrogenous compounds to ammonia. Ammonia is determined colorimetrically by discrete analyser. This method is compliant with NEPM Schedule B(3)                                                                                                                                                                                                                                                                  |
| Total Nitrogen as N (TKN + Nox) By<br>Discrete Analyser | EK062G   | WATER  | In house: Referenced to APHA 4500-Norg / 4500-NO3 This method is compliant with NEPM Schedule B(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Total Phosphorus as P By Discrete<br>Analyser           | EK067G   | WATER  | In house: Referenced to APHA 4500-P H, Jirka et al, Zhang et al. This procedure involves sulphuric acid digestion of a sample aliquot to break phosphorus down to orthophosphate. The orthophosphate reacts with ammonium molybdate and antimony potassium tartrate to form a complex which is then reduced and its concentration measured at 880nm using discrete analyser. This method is compliant with NEPM Schedule B(3)                                                                                                                                 |
| TRH - Semivolatile Fraction                             | EP071    | WATER  | In house: Referenced to USEPA SW 846 - 8015 The sample extract is analysed by Capillary GC/FID and quantification is by comparison against an established 5 point calibration curve of n-Alkane standards. This method is compliant with the QC requirements of NEPM Schedule B(3)                                                                                                                                                                                                                                                                            |

Page : 7 of 7 Work Order : ES2304342

Client : SENVERSA PTY LTD
Project : S20102 Wetherill Park WME



| Analytical Methods                      | Method      | Matrix | Method Descriptions                                                                                                                                                                                                                                                                                                                                                                                      |
|-----------------------------------------|-------------|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PAH/Phenois (GC/MS - SIM)               | EP075(SIM)  | WATER  | In house: Referenced to USEPA SW 846 - 8270 Sample extracts are analysed by Capillary GC/MS in SIM Mode and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM Schedule B(3)                                                                                                                                                           |
| TRH Volatiles/BTEX                      | EP080       | WATER  | In house: Referenced to USEPA SW 846 - 8260 Water samples are directly purged prior to analysis by Capillary GC/MS and quantification is by comparison against an established 5 point calibration curve. Alternatively, a sample is equilibrated in a headspace vial and a portion of the headspace determined by GCMS analysis. This method is compliant with the QC requirements of NEPM Schedule B(3) |
| Preparation Methods                     | Method      | Matrix | Method Descriptions                                                                                                                                                                                                                                                                                                                                                                                      |
| TKN/TP Digestion                        | EK061/EK067 | WATER  | In house: Referenced to APHA 4500 Norg - D; APHA 4500 P - H. This method is compliant with NEPM Schedule B(3)                                                                                                                                                                                                                                                                                            |
| Separatory Funnel Extraction of Liquids | ORG14       | WATER  | In house: Referenced to USEPA SW 846 - 3510 100 mL to 1L of sample is transferred to a separatory funnel and serially extracted three times using DCM for each extract. The resultant extracts are combined, dehydrated                                                                                                                                                                                  |
|                                         |             |        | and concentrated for analysis. This method is compliant with NEPM Schedule B(3). ALS default excludes sediment which may be resident in the container.                                                                                                                                                                                                                                                   |



#### **QUALITY CONTROL REPORT**

: 1 of 7

: 13-Feb-2023 : 16-Feb-2023

Work Order : ES2304342 Page

Client : SENVERSA PTY LTD Laboratory : Environmental Division Sydney

Contact : EMMA WALSH Contact : Khaleda Ataei

Address : Level 24, 1 Market St, Sydney NSW 2000 Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

SYDNEY NSW 2000

Telephone : 02 8252 0000 Telephone : + 61 2 8784 8555

Project : S20102 Wetherill Park WME Date Samples Received : 10-Feb-2023

Sampler ; BEC CHAPPLE

Site · ----

Quote number : EN/103/21

No. of samples received : 2
No. of samples analysed : 2

Accreditation No. 825
Accredited for compliance with ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

#### **Signatories**

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Ankit Joshi Senior Chemist - Inorganics Sydney Inorganics, Smithfield, NSW Edwandy Fadjar Organic Coordinator Sydney Organics, Smithfield, NSW

Page : 2 of 7 Work Order : ES2304342

Client : SENVERSA PTY LTD
Project : S20102 Wetherill Park WME



#### General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

# = Indicates failed QC

#### Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR: 0% - 50%; Result > 20 times LOR: 0% - 20%.

| Sub-Matrix: WATER    |                           |                                       |            |        |      | Laboratory L    | Duplicate (DUP) Report |         |                    |
|----------------------|---------------------------|---------------------------------------|------------|--------|------|-----------------|------------------------|---------|--------------------|
| Laboratory sample ID | Sample ID                 | Method: Compound                      | CAS Number | LOR    | Unit | Original Result | Duplicate Result       | RPD (%) | Acceptable RPD (%) |
| EG005(ED093)F: Dis   | solved Metals by ICP-Al   | ES (QC Lot: 4869828)                  |            |        |      |                 |                        |         |                    |
| ES2304342-002        | sw2                       | EG005F: Manganese                     | 7439-96-5  | 0.01   | mg/L | <0.01           | <0.01                  | 0.0     | No Limit           |
|                      |                           | EG005F: Iron                          | 7439-89-6  | 0.05   | mg/L | 0.06            | 0.06                   | 0.0     | No Limit           |
| EA015: Total Dissol  | ved Solids dried at 180 ± | 5 °C (QC Lot: 4870476)                |            |        |      |                 |                        |         |                    |
| ES2304252-001        | Anonymous                 | EA015H: Total Dissolved Solids @180°C |            | 10     | mg/L | 4550            | 4510                   | 0.8     | 0% - 20%           |
| ES2304358-003        | Anonymous                 | EA015H: Total Dissolved Solids @180°C |            | 10     | mg/L | 38100000 μg/L   | 38800                  | 2.0     | 0% - 20%           |
| EA025: Total Suspe   | nded Solids dried at 104  | ± 2°C (QC Lot: 4870477)               |            |        |      |                 |                        |         |                    |
| ES2304252-001        | Anonymous                 | EA025H: Suspended Solids (SS)         |            | 5      | mg/L | 11              | 14                     | 26.3    | No Limit           |
| ES2304358-003        | Anonymous                 | EA025H: Suspended Solids (SS)         |            | 5      | mg/L | 270000 μg/L     | 262                    | 3.0     | 0% - 20%           |
| EG020F: Dissolved    | Metals by ICP-MS (QC L    | .ot: 4869827)                         |            |        |      |                 |                        |         |                    |
| ES2304488-011        | Anonymous                 | EG020A-F: Cadmium                     | 7440-43-9  | 0.0001 | mg/L | <0.0001         | <0.0001                | 0.0     | No Limit           |
|                      |                           | EG020A-F: Arsenic                     | 7440-38-2  | 0.001  | mg/L | <0.001          | <0.001                 | 0.0     | No Limit           |
|                      |                           | EG020A-F: Chromium                    | 7440-47-3  | 0.001  | mg/L | <0.001          | <0.001                 | 0.0     | No Limit           |
|                      |                           | EG020A-F: Copper                      | 7440-50-8  | 0.001  | mg/L | <0.001          | <0.001                 | 0.0     | No Limit           |
|                      |                           | EG020A-F: Lead                        | 7439-92-1  | 0.001  | mg/L | <0.001          | <0.001                 | 0.0     | No Limit           |
|                      |                           | EG020A-F: Nickel                      | 7440-02-0  | 0.001  | mg/L | 0.003           | 0.003                  | 0.0     | No Limit           |
|                      |                           | EG020A-F: Zinc                        | 7440-66-6  | 0.005  | mg/L | <0.005          | <0.005                 | 0.0     | No Limit           |
| ES2304342-002        | sw2                       | EG020A-F: Cadmium                     | 7440-43-9  | 0.0001 | mg/L | <0.0001         | <0.0001                | 0.0     | No Limit           |
|                      |                           | EG020A-F: Arsenic                     | 7440-38-2  | 0.001  | mg/L | <0.001          | <0.001                 | 0.0     | No Limit           |
|                      |                           | EG020A-F: Chromium                    | 7440-47-3  | 0.001  | mg/L | 0.002           | 0.002                  | 0.0     | No Limit           |
|                      |                           | EG020A-F: Copper                      | 7440-50-8  | 0.001  | mg/L | 0.003           | 0.003                  | 0.0     | No Limit           |
|                      |                           | EG020A-F: Lead                        | 7439-92-1  | 0.001  | mg/L | <0.001          | <0.001                 | 0.0     | No Limit           |
|                      |                           | EG020A-F: Nickel                      | 7440-02-0  | 0.001  | mg/L | 0.001           | <0.001                 | 0.0     | No Limit           |
|                      |                           | EG020A-F: Zinc                        | 7440-66-6  | 0.005  | mg/L | <0.005          | <0.005                 | 0.0     | No Limit           |

Page : 3 of 7
Work Order : ES2304342

Client : SENVERSA PTY LTD
Project : S20102 Wetherill Park WME



| Sub-Matrix: WATER    |                       |                                              |                      | Laboratory Duplicate (DUP) Report |      |                 |                  |         |                    |  |
|----------------------|-----------------------|----------------------------------------------|----------------------|-----------------------------------|------|-----------------|------------------|---------|--------------------|--|
| Laboratory sample ID | Sample ID             | Method: Compound                             | CAS Number           | LOR                               | Unit | Original Result | Duplicate Result | RPD (%) | Acceptable RPD (%) |  |
| EG035F: Dissolved    | Mercury by FIMS (Q    | C Lot: 4869826)                              |                      |                                   |      |                 |                  |         |                    |  |
| ES2304488-008        | Anonymous             | EG035F: Mercury                              | 7439-97-6            | 0.0001                            | mg/L | 0.0004          | 0.0004           | 0.0     | No Limit           |  |
| ES2304342-002        | sw2                   | EG035F: Mercury                              | 7439-97-6            | 0.0001                            | mg/L | <0.0001         | <0.0001          | 0.0     | No Limit           |  |
| EK059G: Nitrite plu  | s Nitrate as N (NOx)  | by Discrete Analyser (QC Lot: 4869687)       |                      |                                   |      |                 |                  |         |                    |  |
| ES2304232-003        | Anonymous             | EK059G: Nitrite + Nitrate as N               |                      | 0.01                              | mg/L | 1.25            | 1.22             | 2.9     | 0% - 20%           |  |
| ES2304352-002        | Anonymous             | EK059G: Nitrite + Nitrate as N               |                      | 0.01                              | mg/L | <0.01           | <0.01            | 0.0     | No Limit           |  |
| EK061G: Total Kjelo  | dahl Nitrogen By Disc | crete Analyser (QC Lot: 4869684)             |                      |                                   |      |                 |                  |         |                    |  |
| ES2304342-002        | sw2                   | EK061G: Total Kjeldahl Nitrogen as N         |                      | 0.1                               | mg/L | 1.0             | 0.8              | 14.3    | No Limit           |  |
| ES2304232-003        | Anonymous             | EK061G: Total Kjeldahl Nitrogen as N         |                      | 0.1                               | mg/L | 4.8             | 4.4              | 10.0    | 0% - 20%           |  |
| EK067G: Total Phos   | sphorus as P by Disc  | rete Analyser (QC Lot: 4869683)              |                      |                                   |      |                 |                  |         |                    |  |
| ES2304342-002        | sw2                   | EK067G: Total Phosphorus as P                |                      | 0.01                              | mg/L | 0.19            | 0.17             | 7.2     | 0% - 50%           |  |
| ES2304232-003        | Anonymous             | EK067G: Total Phosphorus as P                |                      | 0.01                              | mg/L | 3.85            | 3.79             | 1.4     | 0% - 20%           |  |
| EP080/071: Total Pe  | troleum Hydrocarbo    | ns (QC Lot: 4868872)                         |                      |                                   |      |                 |                  |         |                    |  |
| ES2304473-004        | Anonymous             | EP080: C6 - C9 Fraction                      |                      | 20                                | μg/L | <20             | <20              | 0.0     | No Limit           |  |
| ES2304473-001        | Anonymous             | EP080: C6 - C9 Fraction                      |                      | 20                                | μg/L | <20             | <20              | 0.0     | No Limit           |  |
| EP080/071: Total Re  | ecoverable Hydrocarl  | bons - NEPM 2013 Fractions (QC Lot: 4868872) |                      |                                   |      |                 |                  |         |                    |  |
| ES2304473-004        | Anonymous             | EP080: C6 - C10 Fraction                     | C6_C10               | 20                                | μg/L | <20             | <20              | 0.0     | No Limit           |  |
| ES2304473-001        | Anonymous             | EP080: C6 - C10 Fraction                     | C6_C10               | 20                                | μg/L | <20             | <20              | 0.0     | No Limit           |  |
| EP080: BTEXN (QC     | Lot: 4868872)         |                                              |                      |                                   |      |                 |                  |         |                    |  |
| ES2304473-004        | Anonymous             | EP080: Benzene                               | 71-43-2              | 1                                 | μg/L | <1              | <1               | 0.0     | No Limit           |  |
|                      |                       | EP080: Toluene                               | 108-88-3             | 2                                 | μg/L | <2              | <2               | 0.0     | No Limit           |  |
|                      |                       | EP080: Ethylbenzene                          | 100-41-4             | 2                                 | μg/L | <2              | <2               | 0.0     | No Limit           |  |
|                      |                       | EP080: meta- & para-Xylene                   | 108-38-3             | 2                                 | μg/L | <2              | <2               | 0.0     | No Limit           |  |
|                      |                       |                                              | 106-42-3             |                                   |      |                 |                  |         |                    |  |
|                      |                       | EP080: ortho-Xylene                          | 95-47-6              | 2                                 | μg/L | <2              | <2               | 0.0     | No Limit           |  |
|                      |                       | EP080: Naphthalene                           | 91-20-3              | 5                                 | μg/L | <5              | <5               | 0.0     | No Limit           |  |
| ES2304473-001        | Anonymous             | EP080: Benzene                               | 71-43-2              | 1                                 | μg/L | <1              | <1               | 0.0     | No Limit           |  |
|                      |                       | EP080: Toluene                               | 108-88-3             | 2                                 | μg/L | <2              | <2               | 0.0     | No Limit           |  |
|                      |                       | EP080: Ethylbenzene                          | 100-41-4             | 2                                 | μg/L | <2              | <2               | 0.0     | No Limit           |  |
|                      |                       | EP080: meta- & para-Xylene                   | 108-38-3<br>106-42-3 | 2                                 | μg/L | <2              | <2               | 0.0     | No Limit           |  |
|                      |                       | EP080: ortho-Xylene                          | 95-47-6              | 2                                 | μg/L | <2              | <2               | 0.0     | No Limit           |  |
|                      |                       | EP080: Naphthalene                           | 91-20-3              | 5                                 | μg/L | <5              | <5               | 0.0     | No Limit           |  |

Page : 4 of 7
Work Order : ES2304342

Client : SENVERSA PTY LTD
Project : S20102 Wetherill Park WME



## Method Blank (MB) and Laboratory Control Sample (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

| Sub-Matrix: WATER                                            |               |         |        | Method Blank (MB) | Laboratory Control Spike (LCS) Report |                    |            |            |  |
|--------------------------------------------------------------|---------------|---------|--------|-------------------|---------------------------------------|--------------------|------------|------------|--|
|                                                              |               |         |        | Report            | Spike                                 | Spike Recovery (%) | Acceptable | Limits (%) |  |
| Method: Compound                                             | CAS Number    | LOR     | Unit   | Result            | Concentration                         | LCS                | Low        | High       |  |
| EG005(ED093)F: Dissolved Metals by ICP-AES (QCLot: 4869      | 828)          |         |        |                   |                                       |                    |            |            |  |
| EG005F: Iron                                                 | 7439-89-6     | 0.05    | mg/L   | <0.05             | 0.5 mg/L                              | 108                | 82.0       | 114        |  |
| EG005F: Manganese                                            | 7439-96-5     | 0.01    | mg/L   | <0.01             | 0.1 mg/L                              | 91.1               | 81.0       | 113        |  |
| EA015: Total Dissolved Solids dried at 180 ± 5 °C (QCLot: 48 | 370476)       |         |        |                   |                                       |                    |            |            |  |
| EA015H: Total Dissolved Solids @180°C                        |               | 10      | mg/L   | <10               | 2000 mg/L                             | 94.6               | 87.0       | 109        |  |
|                                                              |               |         |        | <10               | 293 mg/L                              | 99.5               | 75.2       | 126        |  |
|                                                              |               |         |        | <10               | 2340 mg/L                             | 102                | 83.0       | 124        |  |
| EA025: Total Suspended Solids dried at 104 ± 2°C (QCLot: 4   | 870477)       |         |        |                   |                                       |                    |            |            |  |
| EA025H: Suspended Solids (SS)                                |               | 5       | mg/L   | <5                | 150 mg/L                              | 95.3               | 83.0       | 129        |  |
| , , ,                                                        |               |         |        | <5                | 1000 mg/L                             | 96.3               | 82.0       | 110        |  |
|                                                              |               |         |        | <5                | 987 mg/L                              | 93.6               | 83.0       | 118        |  |
| EG020F: Dissolved Metals by ICP-MS (QCLot: 4869827)          |               |         |        |                   |                                       |                    |            |            |  |
| EG020A-F: Arsenic                                            | 7440-38-2     | 0.001   | mg/L   | <0.001            | 0.1 mg/L                              | 89.6               | 85.0       | 114        |  |
| EG020A-F: Cadmium                                            | 7440-43-9     | 0.0001  | mg/L   | <0.0001           | 0.1 mg/L                              | 89.5               | 84.0       | 110        |  |
| EG020A-F: Chromium                                           | 7440-47-3     | 0.001   | mg/L   | <0.001            | 0.1 mg/L                              | 88.3               | 85.0       | 111        |  |
| EG020A-F: Copper                                             | 7440-50-8     | 0.001   | mg/L   | <0.001            | 0.1 mg/L                              | 88.4               | 81.0       | 111        |  |
| EG020A-F: Lead                                               | 7439-92-1     | 0.001   | mg/L   | <0.001            | 0.1 mg/L                              | 90.6               | 83.0       | 111        |  |
| EG020A-F: Nickel                                             | 7440-02-0     | 0.001   | mg/L   | <0.001            | 0.1 mg/L                              | 86.8               | 82.0       | 112        |  |
| EG020A-F: Zinc                                               | 7440-66-6     | 0.005   | mg/L   | <0.005            | 0.1 mg/L                              | 88.2               | 81.0       | 117        |  |
| EG035F: Dissolved Mercury by FIMS (QCLot: 4869826)           |               |         |        |                   |                                       |                    |            |            |  |
| EG035F: Mercury                                              | 7439-97-6     | 0.0001  | mg/L   | <0.0001           | 0.01 mg/L                             | 95.2               | 83.0       | 105        |  |
| EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analyse  | er (QCLot: 48 | (69687) |        |                   |                                       |                    |            |            |  |
| EK059G: Nitrite + Nitrate as N                               |               | 0.01    | mg/L   | <0.01             | 0.5 mg/L                              | 106                | 91.0       | 113        |  |
| EK061G: Total Kjeldahl Nitrogen By Discrete Analyser(QCL     | ot: 4869684)  |         |        |                   | -                                     |                    |            |            |  |
| EK061G: Total Kjeldahl Nitrogen as N                         |               | 0.1     | mg/L   | <0.1              | 10 mg/L                               | 96.4               | 69.0       | 101        |  |
| Endoro. Total rycladiii Willogoli do W                       |               |         | 9      | <0.1              | 1 mg/L                                | 94.4               | 70.0       | 118        |  |
|                                                              |               |         |        | <0.1              | 5 mg/L                                | 102                | 70.0       | 130        |  |
| EK067G: Total Phosphorus as P by Discrete Analyser(QCL       | ot: 4869683)  |         |        |                   |                                       |                    |            |            |  |
| EK067G: Total Phosphorus as P                                |               | 0.01    | mg/L   | <0.01             | 4.42 mg/L                             | 93.5               | 71.3       | 126        |  |
| Enter G. Total Thosphorus as I                               |               |         | 9      | <0.01             | 0.442 mg/L                            | 90.4               | 71.3       | 126        |  |
|                                                              |               |         |        | <0.01             | 1 mg/L                                | 98.7               | 71.3       | 126        |  |
| EP075(SIM)A: Phenolic Compounds (QCLot: 4866073)             |               |         |        |                   |                                       |                    |            | 1          |  |
| EP075(SIM): Phenol                                           | 108-95-2      | 1       | μg/L   | <1.0              | 5 μg/L                                | 34.6               | 24.5       | 61.9       |  |
| EP075(SIM): 2-Chlorophenol                                   | 95-57-8       | 1       | μg/L   | <1.0              | 5 μg/L                                | 74.2               | 52.0       | 90.0       |  |
| EP075(SIM): 2-Methylphenol                                   | 95-48-7       | 1       | μg/L   | <1.0              | 5 μg/L                                | 66.3               | 51.0       | 91.0       |  |
| El 979(9/14). 2 Montyphonol                                  |               | •       | r.a. = |                   |                                       |                    |            |            |  |

Page : 5 of 7
Work Order : ES2304342

Client : SENVERSA PTY LTD
Project : S20102 Wetherill Park WME



| Sub-Matrix: WATER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |                      |      | Method Blank (MB) | Laboratory Control Spike (LCS) Report |                    |            |            |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|----------------------|------|-------------------|---------------------------------------|--------------------|------------|------------|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                      |      | Report            | Spike                                 | Spike Recovery (%) | Acceptable | Limits (%) |  |
| Method: Compound                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CAS Number            | LOR                  | Unit | Result            | Concentration                         | LCS                | Low        | High       |  |
| EP075(SIM)A: Phenolic Compounds (QCLot: 48660)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 73) - continued       |                      |      |                   |                                       |                    |            |            |  |
| EP075(SIM): 3- & 4-Methylphenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1319-77-3             | 2                    | μg/L | <2.0              | 10 μg/L                               | 62.1               | 44.0       | 88.0       |  |
| EP075(SIM): 2-Nitrophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 88-75-5               | 1                    | μg/L | <1.0              | 5 μg/L                                | 72.5               | 48.0       | 100        |  |
| EP075(SIM): 2.4-Dimethylphenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 105-67-9              | 1                    | μg/L | <1.0              | 5 μg/L                                | 67.3               | 49.0       | 99.0       |  |
| EP075(SIM): 2.4-Dichlorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 120-83-2              | 1                    | μg/L | <1.0              | 5 μg/L                                | 72.9               | 53.0       | 105        |  |
| EP075(SIM): 2.6-Dichlorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 87-65-0               | 1                    | μg/L | <1.0              | 5 μg/L                                | 69.2               | 57.0       | 105        |  |
| EP075(SIM): 4-Chloro-3-methylphenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 59-50-7               | 1                    | μg/L | <1.0              | 5 μg/L                                | 71.1               | 53.0       | 99.0       |  |
| EP075(SIM): 2.4.6-Trichlorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 88-06-2               | 1                    | μg/L | <1.0              | 5 μg/L                                | 67.4               | 50.0       | 106        |  |
| EP075(SIM): 2.4.5-Trichlorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 95-95-4               | 1                    | μg/L | <1.0              | 5 μg/L                                | 69.7               | 51.0       | 105        |  |
| EP075(SIM): Pentachlorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 87-86-5               | 2                    | μg/L | <2.0              | 10 μg/L                               | 43.4               | 10.0       | 95.0       |  |
| EP075(SIM)B: Polynuclear Aromatic Hydrocarbons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (QCLot: 4866073)      |                      |      |                   |                                       |                    |            |            |  |
| EP075(SIM): Naphthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 91-20-3               | 1                    | μg/L | <1.0              | 5 μg/L                                | 72.1               | 50.0       | 94.0       |  |
| EP075(SIM): Acenaphthylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 208-96-8              | 1                    | μg/L | <1.0              | 5 μg/L                                | 84.9               | 63.6       | 114        |  |
| EP075(SIM): Acenaphthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 83-32-9               | 1                    | μg/L | <1.0              | 5 μg/L                                | 75.1               | 62.2       | 113        |  |
| EP075(SIM): Fluorene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 86-73-7               | 1                    | μg/L | <1.0              | 5 μg/L                                | 72.2               | 63.9       | 115        |  |
| EP075(SIM): Phenanthrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 85-01-8               | 1                    | μg/L | <1.0              | 5 μg/L                                | 77.5               | 62.6       | 116        |  |
| EP075(SIM): Anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 120-12-7              | 1                    | μg/L | <1.0              | 5 μg/L                                | 89.5               | 64.3       | 116        |  |
| EP075(SIM): Fluoranthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 206-44-0              | 1                    | μg/L | <1.0              | 5 μg/L                                | 71.1               | 63.6       | 118        |  |
| EP075(SIM): Pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 129-00-0              | 1                    | μg/L | <1.0              | 5 μg/L                                | 79.4               | 63.1       | 118        |  |
| EP075(SIM): Benz(a)anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 56-55-3               | 1                    | μg/L | <1.0              | 5 μg/L                                | 66.4               | 64.1       | 117        |  |
| EP075(SIM): Chrysene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 218-01-9              | 1                    | μg/L | <1.0              | 5 μg/L                                | 71.5               | 62.5       | 116        |  |
| EP075(SIM): Benzo(b+j)fluoranthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 205-99-2<br>205-82-3  | 1                    | μg/L | <1.0              | 5 μg/L                                | 70.4               | 61.7       | 119        |  |
| EP075(SIM): Benzo(k)fluoranthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 207-08-9              | 1                    | μg/L | <1.0              | 5 μg/L                                | 79.6               | 63.0       | 115        |  |
| EP075(SIM): Benzo(a)pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 50-32-8               | 0.5                  | μg/L | <0.5              | 5 μg/L                                | 69.2               | 63.3       | 117        |  |
| EP075(SIM): Indeno(1.2.3.cd)pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 193-39-5              | 1                    | μg/L | <1.0              | 5 μg/L                                | 66.2               | 59.9       | 118        |  |
| EP075(SIM): Dibenz(a.h)anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 53-70-3               | 1                    | μg/L | <1.0              | 5 μg/L                                | 66.5               | 61.2       | 117        |  |
| EP075(SIM): Benzo(g.h.i)perylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 191-24-2              | 1                    | μg/L | <1.0              | 5 μg/L                                | 68.7               | 59.1       | 118        |  |
| EP080/071: Total Petroleum Hydrocarbons (QCLot:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4866074)              |                      |      |                   |                                       |                    |            |            |  |
| EP071: C10 - C14 Fraction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       | 50                   | μg/L | <50               | 400 μg/L                              | 57.2               | 53.7       | 97.0       |  |
| EP071: C15 - C28 Fraction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       | 100                  | μg/L | <100              | 600 μg/L                              | 81.3               | 63.3       | 107        |  |
| EP071: C29 - C36 Fraction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       | 50                   | μg/L | <50               | 400 μg/L                              | 87.3               | 58.3       | 120        |  |
| EP080/071: Total Petroleum Hydrocarbons (QCLot:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4868872)              |                      |      |                   |                                       |                    |            |            |  |
| EP080: C6 - C9 Fraction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                       | 20                   | μg/L | <20               | 260 μg/L                              | 95.2               | 75.0       | 127        |  |
| EP080/071: Total Recoverable Hydrocarbons - NEP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | M 2013 Fractions (QCL | ot: 4866 <u>074)</u> |      |                   |                                       |                    |            |            |  |
| EP071: >C10 - C16 Fraction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       | 100                  | μg/L | <100              | 500 μg/L                              | 62.9               | 53.9       | 95.5       |  |
| EP071: >C16 - C34 Fraction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       | 100                  | μg/L | <100              | 700 μg/L                              | 87.0               | 57.8       | 110        |  |
| EP071: >C34 - C40 Fraction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       | 100                  | μg/L | <100              | 300 μg/L                              | 86.2               | 50.5       | 115        |  |
| EP080/071: Total Recoverable Hydrocarbons - NEPI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | M 2013 Fractions (QCL | ot: 4868872)         |      |                   |                                       |                    |            |            |  |
| The state of the s | (45_                  |                      |      |                   |                                       |                    |            |            |  |

Page : 6 of 7 Work Order : ES2304342

Client : SENVERSA PTY LTD
Project : S20102 Wetherill Park WME



| Sub-Matrix: WATER                                |                       |                    |         | Method Blank (MB) | Laboratory Control Spike (LCS) Report |                    |            |            |  |
|--------------------------------------------------|-----------------------|--------------------|---------|-------------------|---------------------------------------|--------------------|------------|------------|--|
|                                                  |                       |                    |         | Report            | Spike                                 | Spike Recovery (%) | Acceptable | Limits (%) |  |
| Method: Compound                                 | CAS Number            | LOR                | Unit    | Result            | Concentration                         | LCS                | Low        | High       |  |
| EP080/071: Total Recoverable Hydrocarbons - NEPM | M 2013 Fractions (QCI | Lot: 4868872) - co | ntinued |                   |                                       |                    |            |            |  |
| EP080: C6 - C10 Fraction                         | C6_C10                | 20                 | μg/L    | <20               | 310 μg/L                              | 99.3               | 75.0       | 127        |  |
| EP080: BTEXN (QCLot: 4868872)                    |                       |                    |         |                   |                                       |                    |            |            |  |
| EP080: Benzene                                   | 71-43-2               | 1                  | μg/L    | <1                | 10 μg/L                               | 97.8               | 70.0       | 122        |  |
| EP080: Toluene                                   | 108-88-3              | 2                  | μg/L    | <2                | 10 μg/L                               | 87.9               | 69.0       | 123        |  |
| EP080: Ethylbenzene                              | 100-41-4              | 2                  | μg/L    | <2                | 10 μg/L                               | 86.4               | 70.0       | 120        |  |
| EP080: meta- & para-Xylene                       | 108-38-3              | 2                  | μg/L    | <2                | 10 μg/L                               | 83.2               | 69.0       | 121        |  |
|                                                  | 106-42-3              |                    |         |                   |                                       |                    |            |            |  |
| EP080: ortho-Xylene                              | 95-47-6               | 2                  | μg/L    | <2                | 10 μg/L                               | 90.0               | 72.0       | 122        |  |
| EP080: Naphthalene                               | 91-20-3               | 5                  | μg/L    | <5                | 10 μg/L                               | 96.0               | 70.0       | 120        |  |

## Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

| Sub-Matrix: WATER    |                                                        |                                      |            | Ma            | atrix Spike (MS) Report |            |            |
|----------------------|--------------------------------------------------------|--------------------------------------|------------|---------------|-------------------------|------------|------------|
|                      |                                                        |                                      |            | Spike         | SpikeRecovery(%)        | Acceptable | Limits (%) |
| Laboratory sample ID | Sample ID                                              | Method: Compound                     | CAS Number | Concentration | MS                      | Low        | High       |
| EG005(ED093)F: D     | Dissolved Metals by ICP-AES (QCLot: 4869828)           |                                      |            |               |                         |            |            |
| ES2304342-001        | SW1                                                    | EG005F: Manganese                    | 7439-96-5  | 1 mg/L        | 108                     | 70.0       | 130        |
| EG020F: Dissolve     | d Metals by ICP-MS (QCLot: 4869827)                    |                                      |            |               |                         |            |            |
| ES2304488-002        | Anonymous                                              | EG020A-F: Arsenic                    | 7440-38-2  | 1 mg/L        | 91.9                    | 70.0       | 130        |
|                      |                                                        | EG020A-F: Cadmium                    | 7440-43-9  | 0.25 mg/L     | 93.6                    | 70.0       | 130        |
|                      |                                                        | EG020A-F: Chromium                   | 7440-47-3  | 1 mg/L        | 89.0                    | 70.0       | 130        |
|                      |                                                        | EG020A-F: Copper                     | 7440-50-8  | 1 mg/L        | 91.2                    | 70.0       | 130        |
|                      |                                                        | EG020A-F: Lead                       | 7439-92-1  | 1 mg/L        | 87.3                    | 70.0       | 130        |
|                      |                                                        | EG020A-F: Nickel                     | 7440-02-0  | 1 mg/L        | 90.6                    | 70.0       | 130        |
|                      |                                                        | EG020A-F: Zinc                       | 7440-66-6  | 1 mg/L        | 91.3                    | 70.0       | 130        |
| EG035F: Dissolve     | d Mercury by FIMS (QCLot: 4869826)                     |                                      |            |               |                         |            |            |
| ES2304342-001        | SW1                                                    | EG035F: Mercury                      | 7439-97-6  | 0.01 mg/L     | 89.4                    | 70.0       | 130        |
| EK059G: Nitrite p    | lus Nitrate as N (NOx) by Discrete Analyser (QCLot: 48 | 69687)                               |            |               |                         |            |            |
| ES2304232-003        | Anonymous                                              | EK059G: Nitrite + Nitrate as N       |            | 0.5 mg/L      | 103                     | 70.0       | 130        |
| EK061G: Total Kje    | eldahl Nitrogen By Discrete Analyser (QCLot: 4869684)  |                                      |            |               |                         |            |            |
| ES2304233-001        | Anonymous                                              | EK061G: Total Kjeldahl Nitrogen as N |            | 5 mg/L        | 82.4                    | 70.0       | 130        |
| EK067G: Total Ph     | osphorus as P by Discrete Analyser (QCLot: 4869683)    |                                      |            |               |                         |            |            |
| ES2304233-001        | Anonymous                                              | EK067G: Total Phosphorus as P        |            | 10 mg/L       | 92.5                    | 70.0       | 130        |
| EP080/071: Total I   | Petroleum Hydrocarbons (QCLot: 4868872)                |                                      |            |               |                         |            |            |
| ES2304473-001        | Anonymous                                              |                                      |            |               |                         |            |            |

Page : 7 of 7 Work Order : ES2304342

Client : SENVERSA PTY LTD
Project : S20102 Wetherill Park WME



| Sub-Matrix: WATER    |                                                     |                            |            | Matrix Spike (MS) Report |                  |            |            |
|----------------------|-----------------------------------------------------|----------------------------|------------|--------------------------|------------------|------------|------------|
|                      |                                                     |                            |            | Spike                    | SpikeRecovery(%) | Acceptable | Limits (%) |
| Laboratory sample ID | Sample ID                                           | Method: Compound           | CAS Number | Concentration            | MS               | Low        | High       |
| EP080/071: Total     | Petroleum Hydrocarbons (QCLot: 4868872) - continued |                            |            |                          |                  |            |            |
| ES2304473-001        | Anonymous                                           | EP080: C6 - C9 Fraction    |            | 325 µg/L                 | 108              | 70.0       | 130        |
| EP080/071: Total     | Recoverable Hydrocarbons - NEPM 2013 Fractions (QCI | ot: 4868872)               |            |                          |                  |            |            |
| ES2304473-001        | Anonymous                                           | EP080: C6 - C10 Fraction   | C6_C10     | 375 μg/L                 | 112              | 70.0       | 130        |
| EP080: BTEXN (       | QCLot: 4868872)                                     |                            |            |                          |                  |            |            |
| ES2304473-001        | Anonymous                                           | EP080: Benzene             | 71-43-2    | 25 μg/L                  | 85.3             | 70.0       | 130        |
|                      |                                                     | EP080: Toluene             | 108-88-3   | 25 μg/L                  | 93.5             | 70.0       | 130        |
|                      |                                                     | EP080: Ethylbenzene        | 100-41-4   | 25 μg/L                  | 100              | 70.0       | 130        |
|                      |                                                     | EP080: meta- & para-Xylene | 108-38-3   | 25 μg/L                  | 98.8             | 70.0       | 130        |
|                      |                                                     |                            | 106-42-3   |                          |                  |            |            |
|                      |                                                     | EP080: ortho-Xylene        | 95-47-6    | 25 μg/L                  | 102              | 70.0       | 130        |
|                      |                                                     | EP080: Naphthalene         | 91-20-3    | 25 μg/L                  | 99.4             | 70.0       | 130        |



#### CHAIN OF CUSTODY

ALS Laboratory: please tick >

DOMESTICAL STREET, No. 1, 1900 From Secretaries - 0, 1900 From Street, Secretaries - 0, 1900 From Secr

gr StrateMic to discovered the distance Products

APT AT A TAIL ON THE PERSON OF THE

\_d5v15vFix 277\_38qcVncvtein Rend Statement FixSVF architecture of animal and former of 1517

FOR LABORATORY USE ONLY (Circle)

perfect services prints a Relability of the sound of the victor

| CLIENT: SEAWL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | na na                                              |                                     | TURNAROU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ND REQUIREMENTS:                            | X Stand  | ard TAT (List  | due date):      |              |                         |           |            | FOR              | ABORAT         | ORY USE OF                   | NLY (Circle)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|----------|----------------|-----------------|--------------|-------------------------|-----------|------------|------------------|----------------|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
| OFFICE:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                    |                                     | (Standard TAT)<br>e.g., Ultra Trace                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | may be longer for some tests<br>c Organics) | □ Non S  | standard or un | gent TAT (Lis   | st due date) |                         |           |            | 7.00.00          | ly Seal Intact |                              | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | No N/A                   |
| PROJECT: WOO R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | edirect Wetherill Pa                               | vh project no.:2010                 | Z ALS QUOTE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | NO.:                                        |          |                |                 |              | COC SEQUE               | ICE NUMBE | R (Circle) | receipt          | ?              | e bricks present             | 168                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | No N/A                   |
| ORDER NUMBER:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                    | HASE ORDER NO.:                     | COUNTRY O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | F ORIGIN:                                   |          |                |                 | coc:         | 2                       | 3 4       | 5 6        |                  |                | emperature on                | Receipt:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | °C                       |
| PROJECT MANAGER:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Bec Chapple<br>yley Yellowlees                     | CONTAC                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |          |                |                 | OF:          | ① 2                     | 3 4       | 5 6        |                  | comment:       |                              | RECEIVED BY:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | anustry are constituence |
| SAMPLER: Hav                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | yley rellowless                                    | SAMPLE                              | THE RESERVE OF THE PARTY OF THE | 29 722968                                   | RELINQUI | AND BY:        | _               | RECI         | EIVED BY:               |           |            | RELINQUIS        | HED BT:        |                              | 2RW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                          |
| COC Emailed to ALS?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ( YES / NO)<br>default to PM if no other addresses |                                     | RMAT (or default)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                             |          |                | 7               | DATE         | E/TIME:                 |           |            | DATE/TIME        | <u>.</u>       |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5-37 T                   |
| Email Reports to (will de                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | efault to PM if no other addresses                 | are listed): Bec sample             | on nts@                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SPAULALIOM.                                 | 1418     | 8/23           | 5:45P           | M            |                         |           |            |                  |                |                              | DATE/TIME:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1803                     |
| THE PERSON NAMED OF THE PE | HANDLING/STORAGE OR DISP                           |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | au                                          |          |                | William Control |              |                         |           |            | -1               |                | 1,000                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          |
| ALS USE ONLY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                    | IPLE DETAILS<br>: Solid(S) Water(W) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CONTAINER INF                               | ORMATION | ı              |                 |              |                         |           |            | des must be list |                |                              | Additional Inf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ormation                 |
| LAB ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SAMPLE ID                                          | DATE / TIME                         | MATRIX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TYPE & PRESERVAT                            |          | TOTAL          | W-26            | (MS) Z-M     | W-14 A<br>CPAH (Phenol) | NI-I      | NT-8       | W-18             | Hd             | Total dissolved solids (TDS) | Comments on likely contain dilutions, or samples requirements of samples requirements of the samples requirements |                          |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MWI                                                | 14/8/23                             | W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                             |          | 6              | X               |              |                         |           | X          |                  |                |                              | Environment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | al Division              |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MWZ                                                |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |          |                | X               |              |                         |           | X          |                  |                |                              | Sydney                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | al Dividion              |
| . 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MW3                                                |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |          | 13             | ×               |              |                         |           | X          |                  |                |                              | Sydney Work Order F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Reference<br>27228       |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MWH                                                |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |          |                | X               |              |                         |           | X          |                  |                |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2/020                    |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MWG                                                |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |          | T              | X               |              |                         |           | X          |                  |                |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          |
| 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SWI                                                |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |          | 5              |                 | X            | X                       | X         |            |                  | X              | X                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          |
| 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SW2                                                |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ···········                                 |          | 5              |                 | X            | X                       | X         |            |                  | X              | X                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          |
| 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | QC102                                              |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |          | 5              | X               |              |                         |           |            |                  |                |                              | Telephone + 61-2-87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 784 8555                 |
| q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | QC302                                              | 7                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |          | 54             |                 |              |                         |           |            |                  |                |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          |
| (0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | QC40Z                                              | V                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |          | 1              |                 |              |                         |           |            | X                |                |                              | TRIP BIO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | nh                       |
| U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | QC50Z                                              |                                     | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                             |          | 1              |                 |              |                         |           |            | X                |                |                              | TRIP Spi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             | TOTA     | L              |                 |              |                         |           |            |                  |                |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          |

Water Container Codes: P = Unpreserved Plastic; N = Nitric Preserved Plastic; ORC = Nitric Preserved ORC; SH ≈ Sodium Hydroxide/Cd Preserved; S = Sodium Hydroxide Preserved Plastic; AG = Amber Glass U V = VOA Vial HCI Preserved; VB = VOA Vial Sodium Bisulphate Preserved; VS = VOA Vial Sulfuric Preserved; AV = Airfreight Unpreserved Glass; H = HCI preserved Plastic; HS = HCI preserved Speciation bottle; SP = Sulfuric Preserved Plastic; F = Formaldehyde Preserved Glass; Z = Zinc Acetate Preserved Bottle; E = EDTA Preserved Bottles; ST = Sterile Bottle; ASS = Plastic Bag for Acid Sulphate Soils; B = Unpreserved Bag; U = Lugols Iodine Preserved Bottles; STT = Sterile Sodium Thiosulfate Preserved Bottles.



# **CERTIFICATE OF ANALYSIS**

**Work Order** : **ES2327328** Page : 1 of 10

Amendment : 2

Client : SENVERSA PTY LTD Laboratory : Environmental Division Sydney

Contact : BEC CHAPPLE Contact : Khaleda Ataei

Address : Level 24, 1 Market St, Sydney NSW 2000 Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

SYDNEY NSW 2000

 Telephone
 : --- Telephone
 : + 61 2 8784 8555

 Project
 : 20102 REDIRECT WETHERILL PARK
 Date Samples Received
 : 14-Aug-2023 17:45

Order number : ---C-O-C number : ----

Sampler : Hayley Yellowlees

Site : --

Quote number : EN/103/21

No. of samples received : 11

No. of samples analysed : 11

Accreditation No. 825
Accredited for compliance with

ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

**Date Analysis Commenced** 

Issue Date

: 14-Aug-2023

: 23-Aug-2023 12:16

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

#### **Signatories**

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Alex Rossi Organic Chemist Sydney Organics, Smithfield, NSW Wisam Marassa Inorganics Coordinator Sydney Inorganics, Smithfield, NSW

Page : 2 of 10

Work Order : ES2327328 Amendment 2
Client : SENVERSA PTY LTD

Project : 20102 REDIRECT WETHERILL PARK



#### **General Comments**

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contract for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.
- EP075 (SIM): Where reported, Benzo(a)pyrene Toxicity Equivalent Quotient (TEQ) per the NEPM (2013) is the sum total of the concentration of the eight carcinogenic PAHs multiplied by their Toxicity Equivalence Factor (TEF) relative to Benzo(a)pyrene. TEF values are provided in brackets as follows: Benz(a)anthracene (0.1), Chrysene (0.01), Benzo(b+j) & Benzo(k)fluoranthene (0.1), Benzo(a)pyrene (1.0), Indeno(1.2.3.cd)pyrene (0.1), Dibenz(a.h)anthracene (1.0), Benzo(g.h.i)perylene (0.01). Less than LOR results for 'TEQ Zero' are treated as zero.
- EP080: Where reported, Total Xylenes is the sum of the reported concentrations of m&p-Xylene and o-Xylene at or above the LOR.
- EP075(SIM): Where reported, Total Cresol is the sum of the reported concentrations of 2-Methylphenol and 3- & 4-Methylphenol at or above the LOR.
- EG020: LORs have been raised for some samples due to matrix interference (High sample salinity)
- Amendment (23/08/2023): This report has been amended and re-released to allow the reporting of additional analytical data, specifically method EG020F for samples 001-009.
- EP080: Sample TRIP SPIKE contains volatile compounds spiked into the sample containers prior to dispatch from the laboratory. BTEXN compounds spiked at 20 ug/L.

: 3 of 10 : ES2327328 Amendment 2 Work Order : SENVERSA PTY LTD Client

Project 20102 REDIRECT WETHERILL PARK

| Sub-Matrix: WATER (Matrix: WATER)                           |                      |            | Sample ID       | MW1               | MW2               | MW3               | MW4               | MW6               |
|-------------------------------------------------------------|----------------------|------------|-----------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|                                                             |                      | Sampli     | ing date / time | 14-Aug-2023 00:00 |
| Compound                                                    | CAS Number           | LOR        | Unit            | ES2327328-001     | ES2327328-002     | ES2327328-003     | ES2327328-004     | ES2327328-005     |
|                                                             |                      |            |                 | Result            | Result            | Result            | Result            | Result            |
| EG020F: Dissolved Metals by ICP-N                           | 1S                   |            |                 |                   |                   |                   |                   |                   |
| Arsenic                                                     | 7440-38-2            | 0.001      | mg/L            | 0.008             | 0.004             | <0.010            | 0.007             | 0.002             |
| Cadmium                                                     | 7440-43-9            | 0.0001     | mg/L            | <0.0001           | <0.0001           | <0.0010           | <0.0001           | <0.0001           |
| Chromium                                                    | 7440-47-3            | 0.001      | mg/L            | <0.001            | <0.001            | <0.010            | <0.001            | <0.001            |
| Copper                                                      | 7440-50-8            | 0.001      | mg/L            | <0.001            | <0.001            | <0.010            | <0.001            | <0.001            |
| Nickel                                                      | 7440-02-0            | 0.001      | mg/L            | 0.036             | 0.005             | 0.207             | 0.020             | 0.002             |
| Lead                                                        | 7439-92-1            | 0.001      | mg/L            | <0.001            | <0.001            | <0.010            | <0.001            | <0.001            |
| Zinc                                                        | 7440-66-6            | 0.005      | mg/L            | 0.045             | 0.009             | 0.122             | <0.005            | 0.006             |
| Manganese                                                   | 7439-96-5            | 0.001      | mg/L            | 2.26              | 1.00              | 6.39              | 6.04              | 0.225             |
| Iron                                                        | 7439-89-6            | 0.05       | mg/L            | 2.01              | 0.58              | 5.64              | 2.91              | 0.20              |
| EG035F: Dissolved Mercury by FIM                            | S                    |            |                 |                   |                   |                   |                   |                   |
| Mercury                                                     | 7439-97-6            | 0.0001     | mg/L            | <0.0001           | <0.0001           | <0.0001           | <0.0001           | <0.0001           |
| EK055G: Ammonia as N by Discrete                            | e Analyser           |            |                 |                   |                   |                   |                   |                   |
| Ammonia as N                                                | 7664-41-7            | 0.01       | mg/L            | 0.49              | 0.52              | 0.29              | 0.32              | 0.09              |
| EK057G: Nitrite as N by Discrete A                          | nalyser              |            |                 |                   |                   |                   |                   |                   |
| Nitrite as N                                                | 14797-65-0           | 0.01       | mg/L            | <0.01             | <0.01             | <0.01             | <0.01             | <0.01             |
| EK058G: Nitrate as N by Discrete A                          | 1.00                 |            |                 |                   |                   |                   |                   |                   |
| Nitrate as N                                                | 14797-55-8           | 0.01       | mg/L            | 0.02              | <0.01             | <0.01             | <0.01             | 0.18              |
| EK059G: Nitrite plus Nitrate as N (N                        |                      |            | <u> </u>        |                   |                   |                   |                   |                   |
| Nitrite + Nitrate as N                                      | OX) by Discrete And  | 0.01       | mg/L            | 0.02              | <0.01             | <0.01             | <0.01             | 0.18              |
| EK061G: Total Kjeldahl Nitrogen By                          | , Digarata Anglyaar  | 0.01       | g/ _            |                   | 0.01              | 0.01              | 0.01              | 0.10              |
| Total Kjeldahl Nitrogen as N                                | Discrete Analyser    | 0.1        | mg/L            | 0.6               | 0.6               | 0.4               | 0.5               | 0.4               |
|                                                             | . NOw by Discusts A  |            | mg/L            | 0.0               | 0.0               | 0.4               | 0.0               | 0.4               |
| EK062G: Total Nitrogen as N (TKN -<br>^ Total Nitrogen as N | + NOX) by Discrete A | 0.1        | mg/L            | 0.6               | 0,6               | 0.4               | 0.5               | 0.6               |
|                                                             | 5                    | 0.1        | Hig/L           | 0.0               | 0.0               | 0.4               | 0.5               | 0.0               |
| EK067G: Total Phosphorus as P by                            |                      | 0.01       | ma/l            | 0.00              | 0.04              | 0.00              | 0.04              | 0.44              |
| Total Phosphorus as P                                       |                      | 0.01       | mg/L            | 0.02              | 0.04              | 0.02              | 0.01              | 0.14              |
| EP075(SIM)B: Polynuclear Aromatic                           |                      | 4.0        |                 | -11.0             | -4.0              | 44.0              | -11.0             | 44.0              |
| Naphthalene                                                 | 91-20-3              | 1.0        | μg/L            | <1.0              | <1.0              | <1.0              | <1.0              | <1.0              |
| Acenaphthylene                                              | 208-96-8             | 1.0<br>1.0 | μg/L            | <1.0<br><1.0      | <1.0<br><1.0      | <1.0<br><1.0      | <1.0<br><1.0      | <1.0<br><1.0      |
| Acenaphthene                                                | 83-32-9              |            | μg/L            |                   | -                 | -                 |                   |                   |
| Fluorene                                                    | 86-73-7              | 1.0        | μg/L            | <1.0<br><1.0      | <1.0              | <1.0              | <1.0              | <1.0<br><1.0      |
| Phenanthrene                                                | 85-01-8              | 1.0<br>1.0 | μg/L            | <1.0              | <1.0<br><1.0      | <1.0<br><1.0      | <1.0<br><1.0      | <1.0<br><1.0      |
| Anthracene                                                  | 120-12-7             | 1.0        | μg/L            | <1.0              | <1.0              | <1.0              | <1.0              | <1.0              |
| Fluoranthene                                                | 206-44-0             | 1.0        | μg/L            | <1.U              | <b>\1.0</b>       | <1.0              | <1.0              | <b>\1.0</b>       |

: 4 of 10 : ES2327328 Amendment 2 Work Order : SENVERSA PTY LTD Client

Project 20102 REDIRECT WETHERILL PARK



| Sub-Matrix: WATER (Matrix: WATER)      |                      |            | Sample ID      | MW1               | MW2               | MW3               | MW4               | MW6               |
|----------------------------------------|----------------------|------------|----------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|                                        |                      | Sampli     | ng date / time | 14-Aug-2023 00:00 |
| Compound                               | CAS Number           | LOR        | Unit           | ES2327328-001     | ES2327328-002     | ES2327328-003     | ES2327328-004     | ES2327328-005     |
|                                        |                      |            |                | Result            | Result            | Result            | Result            | Result            |
| EP075(SIM)B: Polynuclear Aromatic      | C Hydrocarbons - Con | tinued     |                |                   |                   |                   |                   |                   |
| Pyrene                                 | 129-00-0             | 1.0        | μg/L           | <1.0              | <1.0              | <1.0              | <1.0              | <1.0              |
| Benz(a)anthracene                      | 56-55-3              | 1.0        | μg/L           | <1.0              | <1.0              | <1.0              | <1.0              | <1.0              |
| Chrysene                               | 218-01-9             | 1.0        | μg/L           | <1.0              | <1.0              | <1.0              | <1.0              | <1.0              |
| Benzo(b+j)fluoranthene                 | 205-99-2 205-82-3    | 1.0        | μg/L           | <1.0              | <1.0              | <1.0              | <1.0              | <1.0              |
| Benzo(k)fluoranthene                   | 207-08-9             | 1.0        | μg/L           | <1.0              | <1.0              | <1.0              | <1.0              | <1.0              |
| Benzo(a)pyrene                         | 50-32-8              | 0.5        | μg/L           | <0.5              | <0.5              | <0.5              | <0.5              | <0.5              |
| Indeno(1.2.3.cd)pyrene                 | 193-39-5             | 1.0        | μg/L           | <1.0              | <1.0              | <1.0              | <1.0              | <1.0              |
| Dibenz(a.h)anthracene                  | 53-70-3              | 1.0        | μg/L           | <1.0              | <1.0              | <1.0              | <1.0              | <1.0              |
| Benzo(g.h.i)perylene                   | 191-24-2             | 1.0        | μg/L           | <1.0              | <1.0              | <1.0              | <1.0              | <1.0              |
| ^ Sum of polycyclic aromatic hydrocart | oons                 | 0.5        | μg/L           | <0.5              | <0.5              | <0.5              | <0.5              | <0.5              |
| ^ Benzo(a)pyrene TEQ (zero)            |                      | 0.5        | μg/L           | <0.5              | <0.5              | <0.5              | <0.5              | <0.5              |
| EP080/071: Total Petroleum Hydroc      | arbons               |            |                |                   |                   |                   |                   |                   |
| C6 - C9 Fraction                       |                      | 20         | μg/L           | <20               | <20               | <20               | <20               | <20               |
| C10 - C14 Fraction                     |                      | 50         | μg/L           | <50               | <50               | <50               | <50               | <50               |
| C15 - C28 Fraction                     |                      | 100        | μg/L           | <100              | <100              | <100              | <100              | <100              |
| C29 - C36 Fraction                     |                      | 50         | μg/L           | <50               | <50               | <50               | <50               | <50               |
| <sup>^</sup> C10 - C36 Fraction (sum)  |                      | 50         | μg/L           | <50               | <50               | <50               | <50               | <50               |
| EP080/071: Total Recoverable Hydro     | ocarbons - NEPM 201  | 3 Fraction | ns             |                   |                   |                   |                   |                   |
| C6 - C10 Fraction                      | C6_C10               | 20         | μg/L           | <20               | <20               | <20               | <20               | <20               |
| ^ C6 - C10 Fraction minus BTEX (F1)    | C6_C10-BTEX          | 20         | μg/L           | <20               | <20               | <20               | <20               | <20               |
| >C10 - C16 Fraction                    |                      | 100        | μg/L           | <100              | <100              | <100              | <100              | <100              |
| >C16 - C34 Fraction                    |                      | 100        | μg/L           | <100              | <100              | <100              | <100              | <100              |
| >C34 - C40 Fraction                    |                      | 100        | μg/L           | <100              | <100              | <100              | <100              | <100              |
| ^ >C10 - C40 Fraction (sum)            |                      | 100        | μg/L           | <100              | <100              | <100              | <100              | <100              |
| ^ >C10 - C16 Fraction minus Naphthale  | ne                   | 100        | μg/L           | <100              | <100              | <100              | <100              | <100              |
| (F2)                                   |                      |            |                |                   |                   |                   |                   |                   |
| EP080: BTEXN                           |                      | 11         |                |                   |                   |                   |                   |                   |
| Benzene                                | 71-43-2              | 1          | μg/L           | <1                | <1                | <1                | <1                | <1                |
| Toluene                                | 108-88-3             | 2          | μg/L           | <2                | <2                | <2                | <2                | <2                |
| Ethylbenzene                           | 100-41-4             | 2          | μg/L           | <2                | <2                | <2                | <2                | <2                |
| meta- & para-Xylene                    | 108-38-3 106-42-3    | 2          | μg/L           | <2                | <2                | <2                | <2                | <2                |
| ortho-Xylene                           | 95-47-6              | 2          | μg/L           | <2                | <2                | <2                | <2                | <2                |
| ^ Total Xylenes                        |                      | 2          | μg/L           | <2                | <2                | <2                | <2                | <2                |

: 5 of 10 : ES2327328 Amendment 2 Work Order : SENVERSA PTY LTD Client

Project 20102 REDIRECT WETHERILL PARK

| Sub-Matrix: WATER (Matrix: WATER) |            |        | Sample ID       | MW1               | MW2               | MW3               | MW4               | MW6               |
|-----------------------------------|------------|--------|-----------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|                                   |            | Sampli | ing date / time | 14-Aug-2023 00:00 |
| Compound                          | CAS Number | LOR    | Unit            | ES2327328-001     | ES2327328-002     | ES2327328-003     | ES2327328-004     | ES2327328-005     |
|                                   |            |        |                 | Result            | Result            | Result            | Result            | Result            |
| EP080: BTEXN - Continued          |            |        |                 |                   |                   |                   |                   |                   |
| ^ Sum of BTEX                     |            | 1      | μg/L            | <1                | <1                | <1                | <1                | <1                |
| Naphthalene                       | 91-20-3    | 5      | μg/L            | <5                | <5                | <5                | <5                | <5                |
| EP075(SIM)S: Phenolic Compound    | Surrogates |        |                 |                   |                   |                   |                   |                   |
| Phenol-d6                         | 13127-88-3 | 1.0    | %               | 22.9              | 22.8              | 26.0              | 20.8              | 21.5              |
| 2-Chlorophenol-D4                 | 93951-73-6 | 1.0    | %               | 50.6              | 51.0              | 57.1              | 47.4              | 48.6              |
| 2.4.6-Tribromophenol              | 118-79-6   | 1.0    | %               | 42.6              | 40.1              | 48.2              | 42.4              | 38.5              |
| EP075(SIM)T: PAH Surrogates       |            |        |                 |                   |                   |                   |                   |                   |
| 2-Fluorobiphenyl                  | 321-60-8   | 1.0    | %               | 63.7              | 62.6              | 69.8              | 58.0              | 60.5              |
| Anthracene-d10                    | 1719-06-8  | 1.0    | %               | 78.5              | 75.9              | 82.2              | 72.3              | 72.0              |
| 4-Terphenyl-d14                   | 1718-51-0  | 1.0    | %               | 85.5              | 84.1              | 89.2              | 82.0              | 79.2              |
| EP080S: TPH(V)/BTEX Surrogates    |            |        |                 |                   |                   |                   |                   |                   |
| 1.2-Dichloroethane-D4             | 17060-07-0 | 2      | %               | 121               | 117               | 110               | 116               | 97.2              |
| Toluene-D8                        | 2037-26-5  | 2      | %               | 110               | 113               | 116               | 112               | 99.9              |
| 4-Bromofluorobenzene              | 460-00-4   | 2      | %               | 124               | 125               | 123               | 120               | 107               |

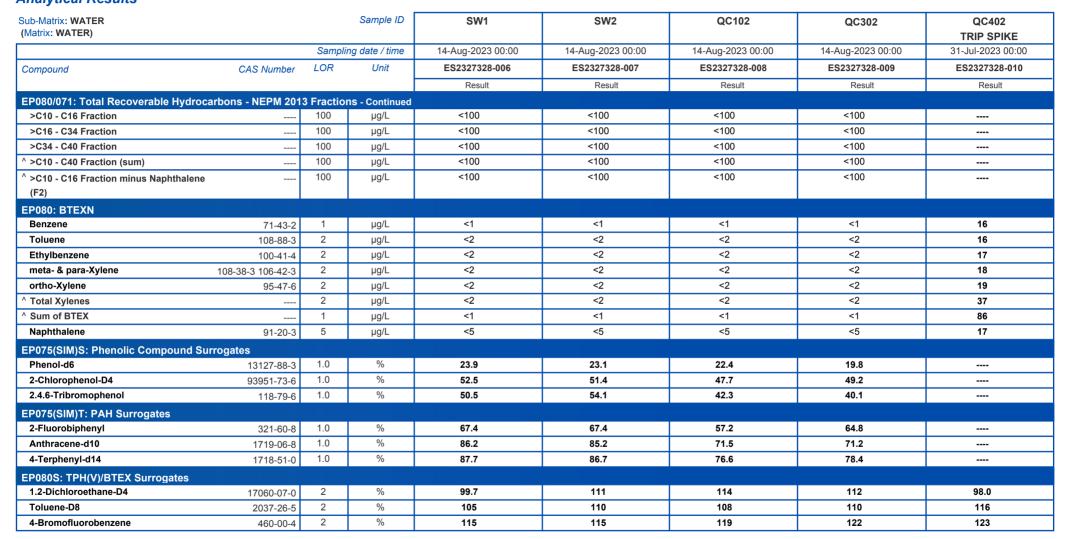
: 6 of 10 : ES2327328 Amendment 2 Work Order : SENVERSA PTY LTD Client

Project 20102 REDIRECT WETHERILL PARK



| Sub-Matrix: WATER<br>(Matrix: WATER) |                       |        | Sample ID       | SW1               | SW2               | QC102             | QC302             | QC402<br>TRIP SPIKE |
|--------------------------------------|-----------------------|--------|-----------------|-------------------|-------------------|-------------------|-------------------|---------------------|
|                                      |                       | Sampli | ing date / time | 14-Aug-2023 00:00 | 14-Aug-2023 00:00 | 14-Aug-2023 00:00 | 14-Aug-2023 00:00 | 31-Jul-2023 00:00   |
| Compound                             | CAS Number            | LOR    | Unit            | ES2327328-006     | ES2327328-007     | ES2327328-008     | ES2327328-009     | ES2327328-010       |
|                                      |                       |        |                 | Result            | Result            | Result            | Result            | Result              |
| EA005P: pH by PC Titrator            |                       |        |                 |                   |                   |                   |                   |                     |
| pH Value                             |                       | 0.01   | pH Unit         | 8.03              | 7.75              |                   |                   |                     |
| EA015: Total Dissolved Solids dried  | d at 180 ± 5 °C       |        |                 |                   |                   |                   |                   |                     |
| Total Dissolved Solids @180°C        |                       | 10     | mg/L            | 316               | 105               |                   |                   |                     |
| EA025: Total Suspended Solids dri    | ed at 104 ± 2°C       |        |                 |                   |                   |                   |                   |                     |
| Suspended Solids (SS)                |                       | 5      | mg/L            | 238               | 39                |                   |                   |                     |
| EG020F: Dissolved Metals by ICP-N    | //S                   |        |                 |                   |                   |                   |                   |                     |
| Arsenic                              | 7440-38-2             | 0.001  | mg/L            | 0.001             | <0.001            | <0.010            | <0.001            |                     |
| Cadmium                              | 7440-43-9             | 0.0001 | mg/L            | <0.0001           | <0.0001           | <0.0010           | <0.0001           |                     |
| Chromium                             | 7440-47-3             | 0.001  | mg/L            | 0.001             | <0.001            | <0.010            | <0.001            |                     |
| Copper                               | 7440-50-8             | 0.001  | mg/L            | 0.004             | 0.001             | <0.010            | <0.001            |                     |
| Nickel                               | 7440-02-0             | 0.001  | mg/L            | <0.001            | <0.001            | 0.205             | <0.001            |                     |
| Lead                                 | 7439-92-1             | 0.001  | mg/L            | <0.001            | <0.001            | <0.010            | <0.001            |                     |
| Zinc                                 | 7440-66-6             | 0.005  | mg/L            | 0.005             | 0.038             | 0.074             | <0.005            |                     |
| Manganese                            | 7439-96-5             | 0.001  | mg/L            | 0.016             | 0.007             | 6.57              | 0.038             |                     |
| Iron                                 | 7439-89-6             | 0.05   | mg/L            | <0.05             | <0.05             | 6.04              | <0.05             |                     |
| EG035F: Dissolved Mercury by FIM     | IS                    |        |                 |                   |                   |                   |                   |                     |
| Mercury                              | 7439-97-6             | 0.0001 | mg/L            | <0.0001           | <0.0001           | <0.0001           | <0.0001           |                     |
| EK059G: Nitrite plus Nitrate as N (l | NOx) by Discrete Ana  | lyser  |                 |                   |                   |                   |                   |                     |
| Nitrite + Nitrate as N               |                       | 0.01   | mg/L            | 0.68              | 0.62              |                   |                   |                     |
| EK061G: Total Kjeldahl Nitrogen By   | v Discrete Analyser   |        |                 |                   |                   |                   |                   |                     |
| Total Kjeldahl Nitrogen as N         |                       | 0.1    | mg/L            | 1.7               | 0.7               |                   |                   |                     |
| EK062G: Total Nitrogen as N (TKN     | + NOx) by Discrete An | alvser |                 |                   |                   |                   |                   |                     |
| ^ Total Nitrogen as N                |                       | 0.1    | mg/L            | 2.4               | 1.3               |                   |                   |                     |
| EK067G: Total Phosphorus as P by     | / Discrete Analyser   |        |                 |                   |                   |                   |                   |                     |
| Total Phosphorus as P                |                       | 0.01   | mg/L            | 0.35              | 0.09              |                   |                   |                     |
| EP075(SIM)A: Phenolic Compound       |                       |        |                 |                   |                   |                   |                   |                     |
| Phenol                               | 108-95-2              | 1.0    | μg/L            | <1.0              | <1.0              |                   |                   |                     |
| 2-Chlorophenol                       | 95-57-8               | 1.0    | μg/L            | <1.0              | <1.0              |                   |                   |                     |
| 2-Methylphenol                       | 95-48-7               | 1.0    | μg/L            | <1.0              | <1.0              |                   |                   |                     |
| 3- & 4-Methylphenol                  | 1319-77-3             | 2.0    | μg/L            | <2.0              | <2.0              |                   |                   |                     |
| 2-Nitrophenol                        | 88-75-5               | 1.0    | μg/L            | <1.0              | <1.0              |                   |                   |                     |
| 2.4-Dimethylphenol                   | 105-67-9              | 1.0    | μg/L            | <1.0              | <1.0              |                   |                   |                     |
| 2.4-Dichlorophenol                   | 120-83-2              | 1.0    | μg/L            | <1.0              | <1.0              |                   |                   |                     |

: 7 of 10 : ES2327328 Amendment 2 Work Order : SENVERSA PTY LTD Client


Project 20102 REDIRECT WETHERILL PARK

| Sub-Matrix: WATER<br>(Matrix: WATER)   |                     |            | Sample ID      | SW1               | SW2               | QC102             | QC302             | QC402<br>TRIP SPIKE |
|----------------------------------------|---------------------|------------|----------------|-------------------|-------------------|-------------------|-------------------|---------------------|
|                                        |                     | Samplii    | ng date / time | 14-Aug-2023 00:00 | 14-Aug-2023 00:00 | 14-Aug-2023 00:00 | 14-Aug-2023 00:00 | 31-Jul-2023 00:00   |
| Compound                               | CAS Number          | LOR        | Unit           | ES2327328-006     | ES2327328-007     | ES2327328-008     | ES2327328-009     | ES2327328-010       |
|                                        |                     |            |                | Result            | Result            | Result            | Result            | Result              |
| EP075(SIM)A: Phenolic Compounds        | - Continued         |            |                |                   |                   |                   |                   |                     |
| 2.6-Dichlorophenol                     | 87-65-0             | 1.0        | μg/L           | <1.0              | <1.0              |                   |                   |                     |
| 4-Chloro-3-methylphenol                | 59-50-7             | 1.0        | μg/L           | <1.0              | <1.0              |                   |                   |                     |
| 2.4.6-Trichlorophenol                  | 88-06-2             | 1.0        | μg/L           | <1.0              | <1.0              |                   |                   |                     |
| 2.4.5-Trichlorophenol                  | 95-95-4             | 1.0        | μg/L           | <1.0              | <1.0              |                   |                   |                     |
| Pentachlorophenol                      | 87-86-5             | 2.0        | μg/L           | <2.0              | <2.0              |                   |                   |                     |
| EP075(SIM)B: Polynuclear Aromatic      | Hydrocarbons        |            |                |                   |                   |                   |                   |                     |
| Naphthalene                            | 91-20-3             | 1.0        | μg/L           | <1.0              | <1.0              | <1.0              | <1.0              |                     |
| Acenaphthylene                         | 208-96-8            | 1.0        | μg/L           | <1.0              | <1.0              | <1.0              | <1.0              |                     |
| Acenaphthene                           | 83-32-9             | 1.0        | μg/L           | <1.0              | <1.0              | <1.0              | <1.0              |                     |
| Fluorene                               | 86-73-7             | 1.0        | μg/L           | <1.0              | <1.0              | <1.0              | <1.0              |                     |
| Phenanthrene                           | 85-01-8             | 1.0        | μg/L           | <1.0              | <1.0              | <1.0              | <1.0              |                     |
| Anthracene                             | 120-12-7            | 1.0        | μg/L           | <1.0              | <1.0              | <1.0              | <1.0              |                     |
| Fluoranthene                           | 206-44-0            | 1.0        | μg/L           | <1.0              | <1.0              | <1.0              | <1.0              |                     |
| Pyrene                                 | 129-00-0            | 1.0        | μg/L           | <1.0              | <1.0              | <1.0              | <1.0              |                     |
| Benz(a)anthracene                      | 56-55-3             | 1.0        | μg/L           | <1.0              | <1.0              | <1.0              | <1.0              |                     |
| Chrysene                               | 218-01-9            | 1.0        | μg/L           | <1.0              | <1.0              | <1.0              | <1.0              |                     |
| Benzo(b+j)fluoranthene                 | 205-99-2 205-82-3   | 1.0        | μg/L           | <1.0              | <1.0              | <1.0              | <1.0              |                     |
| Benzo(k)fluoranthene                   | 207-08-9            | 1.0        | μg/L           | <1.0              | <1.0              | <1.0              | <1.0              |                     |
| Benzo(a)pyrene                         | 50-32-8             | 0.5        | μg/L           | <0.5              | <0.5              | <0.5              | <0.5              |                     |
| Indeno(1.2.3.cd)pyrene                 | 193-39-5            | 1.0        | μg/L           | <1.0              | <1.0              | <1.0              | <1.0              |                     |
| Dibenz(a.h)anthracene                  | 53-70-3             | 1.0        | μg/L           | <1.0              | <1.0              | <1.0              | <1.0              |                     |
| Benzo(g.h.i)perylene                   | 191-24-2            | 1.0        | μg/L           | <1.0              | <1.0              | <1.0              | <1.0              |                     |
| ^ Sum of polycyclic aromatic hydrocarb | ons                 | 0.5        | μg/L           | <0.5              | <0.5              | <0.5              | <0.5              |                     |
| ^ Benzo(a)pyrene TEQ (zero)            |                     | 0.5        | μg/L           | <0.5              | <0.5              | <0.5              | <0.5              |                     |
| EP080/071: Total Petroleum Hydroc      | arbons              |            |                |                   |                   |                   |                   |                     |
| C6 - C9 Fraction                       |                     | 20         | μg/L           | <20               | <20               | <20               | <20               |                     |
| C10 - C14 Fraction                     |                     | 50         | μg/L           | <50               | <50               | <50               | <50               |                     |
| C15 - C28 Fraction                     |                     | 100        | μg/L           | <100              | <100              | <100              | <100              |                     |
| C29 - C36 Fraction                     |                     | 50         | μg/L           | <50               | <50               | <50               | <50               |                     |
| ^ C10 - C36 Fraction (sum)             |                     | 50         | μg/L           | <50               | <50               | <50               | <50               |                     |
| EP080/071: Total Recoverable Hydro     | ocarbons - NEPM 201 | 3 Fraction | ns             |                   |                   |                   |                   |                     |
| C6 - C10 Fraction                      | C6_C10              | 20         | μg/L           | <20               | <20               | <20               | <20               |                     |
| ^ C6 - C10 Fraction minus BTEX (F1)    | C6_C10-BTEX         | 20         | μg/L           | <20               | <20               | <20               | <20               |                     |
| (F1)                                   |                     |            |                |                   |                   |                   |                   |                     |

Page : 8 of 10

Work Order : ES2327328 Amendment 2
Client : SENVERSA PTY LTD

Project · 20102 REDIRECT WETHERILL PARK





: 9 of 10 : ES2327328 Amendment 2 Work Order : SENVERSA PTY LTD Client

Project 20102 REDIRECT WETHERILL PARK



| Sub-Matrix: WATER                  |                      |           | Sample ID | QC502             | <br> | <br> |
|------------------------------------|----------------------|-----------|-----------|-------------------|------|------|
| (Matrix: WATER)                    |                      |           |           | TRIP BLANK        |      |      |
|                                    | Sampling date / time |           |           | 01-Aug-2023 00:00 | <br> | <br> |
| Compound                           | CAS Number           | LOR       | Unit      | ES2327328-011     | <br> | <br> |
|                                    |                      |           |           | Result            | <br> | <br> |
| EP080/071: Total Petroleum Hydroc  | arbons               |           |           |                   |      |      |
| C6 - C9 Fraction                   |                      | 20        | μg/L      | <20               | <br> | <br> |
| EP080/071: Total Recoverable Hydro | ocarbons - NEPM 201  | 3 Fractio | ns        |                   |      |      |
| C6 - C10 Fraction                  | C6_C10               | 20        | μg/L      | <20               | <br> | <br> |
| ^ C6 - C10 Fraction minus BTEX     | C6_C10-BTEX          | 20        | μg/L      | <20               | <br> | <br> |
| (F1)                               |                      |           |           |                   |      |      |
| EP080: BTEXN                       |                      |           |           |                   |      |      |
| Benzene                            | 71-43-2              | 1         | μg/L      | <1                | <br> | <br> |
| Toluene                            | 108-88-3             | 2         | μg/L      | <2                | <br> | <br> |
| Ethylbenzene                       | 100-41-4             | 2         | μg/L      | <2                | <br> | <br> |
| meta- & para-Xylene                | 108-38-3 106-42-3    | 2         | μg/L      | <2                | <br> | <br> |
| ortho-Xylene                       | 95-47-6              | 2         | μg/L      | <2                | <br> | <br> |
| ^ Total Xylenes                    |                      | 2         | μg/L      | <2                | <br> | <br> |
| ^ Sum of BTEX                      |                      | 1         | μg/L      | <1                | <br> | <br> |
| Naphthalene                        | 91-20-3              | 5         | μg/L      | <5                | <br> | <br> |
| EP080S: TPH(V)/BTEX Surrogates     |                      |           |           |                   |      |      |
| 1.2-Dichloroethane-D4              | 17060-07-0           | 2         | %         | 96.6              | <br> | <br> |
| Toluene-D8                         | 2037-26-5            | 2         | %         | 115               | <br> | <br> |
| 4-Bromofluorobenzene               | 460-00-4             | 2         | %         | 121               | <br> | <br> |

: 10 of 10 : ES2327328 Amendment 2 Work Order : SENVERSA PTY LTD Client

20102 REDIRECT WETHERILL PARK Project

# **Surrogate Control Limits**

| Sub-Matrix: WATER                 |            | Recovery Limits (%) |      |  |  |  |
|-----------------------------------|------------|---------------------|------|--|--|--|
| Compound                          | CAS Number | Low                 | High |  |  |  |
| EP075(SIM)S: Phenolic Compound St | urrogates  |                     |      |  |  |  |
| Phenol-d6                         | 13127-88-3 | 10                  | 44   |  |  |  |
| 2-Chlorophenol-D4                 | 93951-73-6 | 14                  | 94   |  |  |  |
| 2.4.6-Tribromophenol              | 118-79-6   | 17                  | 125  |  |  |  |
| EP075(SIM)T: PAH Surrogates       |            |                     |      |  |  |  |
| 2-Fluorobiphenyl                  | 321-60-8   | 20                  | 104  |  |  |  |
| Anthracene-d10                    | 1719-06-8  | 27                  | 113  |  |  |  |
| 4-Terphenyl-d14                   | 1718-51-0  | 32                  | 112  |  |  |  |
| EP080S: TPH(V)/BTEX Surrogates    |            |                     |      |  |  |  |
| 1.2-Dichloroethane-D4             | 17060-07-0 | 72                  | 143  |  |  |  |
| Toluene-D8                        | 2037-26-5  | 75                  | 131  |  |  |  |
| 4-Bromofluorobenzene              | 460-00-4   | 73                  | 137  |  |  |  |





# **QA/QC Compliance Assessment to assist with Quality Review**

**Work Order** : **ES2327328** Page : 1 of 9

Amendment : 2

Client : SENVERSA PTY LTD Laboratory : Environmental Division Sydney

 Contact
 : BEC CHAPPLE
 Telephone
 : + 61 2 8784 8555

 Project
 : 20102 REDIRECT WETHERILL PARK
 Date Samples Received
 : 14-Aug-2023

Site :--- Issue Date :23-Aug-2023

Sampler : Hayley Yellowlees No. of samples received : 11
Order number : ---- No. of samples analysed : 11

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

# **Summary of Outliers**

#### **Outliers: Quality Control Samples**

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- NO Duplicate outliers occur.
- NO Laboratory Control outliers occur.
- NO Matrix Spike outliers occur.
- For all regular sample matrices, NO surrogate recovery outliers occur.

#### **Outliers: Analysis Holding Time Compliance**

NO Analysis Holding Time Outliers exist.

#### **Outliers: Frequency of Quality Control Samples**

Quality Control Sample Frequency Outliers exist - please see following pages for full details.

Page : 2 of 9

Work Order : ES2327328 Amendment 2
Client : SENVERSA PTY LTD

Project · 20102 REDIRECT WETHERILL PARK



#### **Outliers: Frequency of Quality Control Samples**

#### Matrix: WATER

| Quality Control Sample Type                           | Count |         | Rate (%) |          | Quality Control Specification     |
|-------------------------------------------------------|-------|---------|----------|----------|-----------------------------------|
| Method                                                | QC    | Regular | Actual   | Expected |                                   |
| Laboratory Diselector (DLID)                          | U     |         |          |          |                                   |
| Laboratory Duplicates (DUP) PAH/Phenols (GC/MS - SIM) | 0     | 16      | 0.00     | 10.00    | NEPM 2013 B3 & ALS QC Standard    |
| TRH - Semivolatile Fraction                           | 0     | 18      | 0.00     |          | NEPM 2013 B3 & ALS QC Standard    |
|                                                       | U     | 10      | 0.00     | 10.00    | NEF III 2013 B3 & AL3 QC Standard |
| Matrix Spikes (MS)                                    |       |         |          |          |                                   |
| PAH/Phenols (GC/MS - SIM)                             | 0     | 16      | 0.00     | 5.00     | NEPM 2013 B3 & ALS QC Standard    |
| TRH - Semivolatile Fraction                           | 0     | 18      | 0.00     | 5.00     | NEPM 2013 B3 & ALS QC Standard    |

## **Analysis Holding Time Compliance**

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: WATER

Evaluation: **x** = Holding time breach : ✓ = Within holding time.

| Matrix: WATER                                                                     |                                |             |                          |                    | Lvaluation | . ~ - Holding time | breach; ▼ = within | Tholding time |
|-----------------------------------------------------------------------------------|--------------------------------|-------------|--------------------------|--------------------|------------|--------------------|--------------------|---------------|
| Method                                                                            |                                | Sample Date | Extraction / Preparation |                    |            | Analysis           |                    |               |
| Container / Client Sample ID(s)                                                   |                                |             | Date extracted           | Due for extraction | Evaluation | Date analysed      | Due for analysis   | Evaluation    |
| EA005P: pH by PC Titrator                                                         |                                |             |                          |                    |            |                    |                    |               |
| Clear Plastic Bottle - Natural (EA005-P)<br>SW1,                                  | SW2                            | 14-Aug-2023 |                          |                    |            | 14-Aug-2023        | 14-Aug-2023        | ✓             |
| EA015: Total Dissolved Solids dried at 180 ± 5 °C                                 |                                |             |                          |                    |            |                    |                    |               |
| Clear Plastic Bottle - Natural (EA015H)<br>SW1,                                   | SW2                            | 14-Aug-2023 |                          |                    |            | 17-Aug-2023        | 21-Aug-2023        | ✓             |
| EA025: Total Suspended Solids dried at 104 ± 2°C                                  |                                |             |                          |                    |            |                    |                    |               |
| Clear Plastic Bottle - Natural (EA025H)<br>SW1,                                   | SW2                            | 14-Aug-2023 |                          |                    |            | 17-Aug-2023        | 21-Aug-2023        | ✓             |
| EG020F: Dissolved Metals by ICP-MS                                                |                                |             |                          |                    |            |                    |                    |               |
| Clear Plastic Bottle - Nitric Acid; Filtered (EG020A-F) MW1, MW3, MW6, SW2, QC302 | MW2,<br>MW4,<br>SW1,<br>QC102, | 14-Aug-2023 | ****                     |                    |            | 16-Aug-2023        | 10-Feb-2024        | ✓             |

Page : 3 of 9

Work Order : ES2327328 Amendment 2
Client : SENVERSA PTY LTD

Project : 20102 REDIRECT WETHERILL PARK



| . 2010211281120111                                  |                |     |            |                          |                    |            |                    |                    |               |
|-----------------------------------------------------|----------------|-----|------------|--------------------------|--------------------|------------|--------------------|--------------------|---------------|
| Matrix: WATER                                       |                |     |            |                          |                    | Evaluation | : × = Holding time | breach ; ✓ = Withi | n holding tin |
| lethod                                              |                |     | ample Date | Extraction / Preparation |                    |            | Analysis           |                    |               |
| Container / Client Sample ID(s)                     |                |     |            | Date extracted           | Due for extraction | Evaluation | Date analysed      | Due for analysis   | Evaluation    |
| EG035F: Dissolved Mercury by FIMS                   |                |     |            |                          |                    |            |                    |                    |               |
| Clear Plastic Bottle - Nitric Acid; Filtered (EG035 | 5F)            |     |            |                          |                    |            |                    |                    |               |
| MW1,                                                | MW2,           | 14- | l-Aug-2023 |                          |                    |            | 17-Aug-2023        | 11-Sep-2023        | ✓             |
| MW3,                                                | MW4,           |     |            |                          |                    |            |                    |                    |               |
| MW6,                                                | SW1,           |     |            |                          |                    |            |                    |                    |               |
| SW2,                                                | QC102,         |     |            |                          |                    |            |                    |                    |               |
| QC302                                               | ,              |     |            |                          |                    |            |                    |                    |               |
| EK055G: Ammonia as N by Discrete Analyser           |                |     |            |                          |                    |            |                    |                    |               |
| Clear Plastic Bottle - Sulfuric Acid (EK055G)       |                |     |            |                          |                    |            |                    |                    |               |
| MW1,                                                | MW2,           | 14- | l-Aug-2023 |                          |                    |            | 17-Aug-2023        | 11-Sep-2023        | ✓             |
| MW3,                                                | MW4,           |     |            |                          |                    |            |                    |                    |               |
| MW6                                                 |                |     |            |                          |                    |            |                    |                    |               |
| EK057G: Nitrite as N by Discrete Analyser           |                |     |            |                          |                    |            |                    |                    |               |
| Clear Plastic Bottle - Natural (EK057G)             |                |     |            |                          |                    |            |                    |                    |               |
| MW1,                                                | MW2,           | 14- | l-Aug-2023 |                          |                    |            | 16-Aug-2023        | 16-Aug-2023        | ✓             |
| MW3,                                                | MW4,           |     |            |                          |                    |            |                    |                    |               |
| MW6                                                 |                |     |            |                          |                    |            |                    |                    |               |
| EK059G: Nitrite plus Nitrate as N (NOx) by Disc     | crete Analyser |     |            |                          |                    |            |                    |                    |               |
| Clear Plastic Bottle - Sulfuric Acid (EK059G)       |                |     |            |                          |                    |            |                    |                    |               |
| MW1,                                                | MW2,           | 14- | l-Aug-2023 |                          |                    |            | 17-Aug-2023        | 11-Sep-2023        | ✓             |
| MW3,                                                | MW4,           |     |            |                          |                    |            |                    |                    |               |
| MW6,                                                | SW1,           |     |            |                          |                    |            |                    |                    |               |
| SW2                                                 |                |     |            |                          |                    |            |                    |                    |               |
| EK061G: Total Kjeldahl Nitrogen By Discrete An      | alyser         |     |            |                          |                    |            |                    |                    |               |
| Clear Plastic Bottle - Sulfuric Acid (EK061G)       |                |     |            |                          |                    |            |                    |                    |               |
| MW1,                                                | MW2,           | 14- | l-Aug-2023 | 16-Aug-2023              | 11-Sep-2023        | ✓          | 17-Aug-2023        | 11-Sep-2023        | ✓             |
| MW3,                                                | MW4,           |     |            |                          |                    |            |                    |                    |               |
| MW6,                                                | SW1,           |     |            |                          |                    |            |                    |                    |               |
| SW2                                                 |                |     |            |                          |                    |            |                    |                    |               |
| EK067G: Total Phosphorus as P by Discrete Ana       | alyser         |     |            |                          |                    |            |                    |                    |               |
| Clear Plastic Bottle - Sulfuric Acid (EK067G)       |                |     |            |                          |                    |            |                    |                    |               |
| MW1,                                                | MW2,           | 14- | l-Aug-2023 | 16-Aug-2023              | 11-Sep-2023        | ✓          | 17-Aug-2023        | 11-Sep-2023        | ✓             |
| MW3,                                                | MW4,           |     |            |                          |                    |            |                    |                    |               |
| MW6,                                                | SW1,           |     |            |                          |                    |            |                    |                    |               |
| SW2                                                 |                |     |            |                          |                    |            |                    |                    |               |
| EP075(SIM)A: Phenolic Compounds                     |                |     |            |                          |                    |            |                    |                    |               |
| Amber Glass Bottle - Unpreserved (EP075(SIM))       |                |     |            | 40. 4 0000               | 24 A 2022          | ,          | 47 4 0000          | 05 0 0000          |               |
| SW1,                                                | SW2            | 14- | l-Aug-2023 | 16-Aug-2023              | 21-Aug-2023        | ✓          | 17-Aug-2023        | 25-Sep-2023        | ✓             |

Page : 4 of 9

Work Order : ES2327328 Amendment 2
Client : SENVERSA PTY LTD

Project : 20102 REDIRECT WETHERILL PARK



| Matrix: WATER                                      |               |             |                |                        | Evaluation | : × = Holding time | breach ; ✓ = Withi | n holding time |
|----------------------------------------------------|---------------|-------------|----------------|------------------------|------------|--------------------|--------------------|----------------|
| Method                                             |               | Sample Date | Ex             | traction / Preparation |            | Analysis           |                    |                |
| Container / Client Sample ID(s)                    |               |             | Date extracted | Due for extraction     | Evaluation | Date analysed      | Due for analysis   | Evaluation     |
| EP075(SIM)B: Polynuclear Aromatic Hydrocarbons     |               |             |                |                        |            |                    |                    |                |
| Amber Glass Bottle - Unpreserved (EP075(SIM))      |               |             |                |                        |            |                    |                    |                |
| MW1,                                               | MW2,          | 14-Aug-2023 | 16-Aug-2023    | 21-Aug-2023            | ✓          | 17-Aug-2023        | 25-Sep-2023        | ✓              |
| MW3,                                               | MW4,          |             |                |                        |            |                    |                    |                |
| MW6,                                               | SW1,          |             |                |                        |            |                    |                    |                |
| SW2                                                |               |             |                |                        |            |                    |                    |                |
| Amber Glass Bottle - Unpreserved (EP075(SIM))      |               |             |                |                        |            |                    |                    |                |
| QC102,                                             | QC302         | 14-Aug-2023 | 16-Aug-2023    | 21-Aug-2023            | ✓          | 18-Aug-2023        | 25-Sep-2023        | ✓              |
| EP080/071: Total Petroleum Hydrocarbons            |               |             |                |                        |            |                    |                    |                |
| Amber Glass Bottle - Unpreserved (EP071)           |               |             |                |                        |            |                    |                    |                |
| MW1,                                               | MW2,          | 14-Aug-2023 | 16-Aug-2023    | 21-Aug-2023            | ✓          | 17-Aug-2023        | 25-Sep-2023        | ✓              |
| MW3,                                               | MW4,          |             |                |                        |            |                    |                    |                |
| MW6,                                               | SW1,          |             |                |                        |            |                    |                    |                |
| SW2,                                               | QC102,        |             |                |                        |            |                    |                    |                |
| QC302                                              |               |             |                |                        |            |                    |                    |                |
| Amber VOC Vial - Sulfuric Acid (EP080)             |               |             |                |                        |            |                    |                    |                |
| QC502 - TRIP BLANK                                 |               | 01-Aug-2023 | 14-Aug-2023    | 15-Aug-2023            | ✓          | 14-Aug-2023        | 15-Aug-2023        | ✓              |
| Amber VOC Vial - Sulfuric Acid (EP080)             |               |             |                |                        |            |                    |                    |                |
| MW1,                                               | MW2,          | 14-Aug-2023 | 17-Aug-2023    | 28-Aug-2023            | ✓          | 17-Aug-2023        | 28-Aug-2023        | ✓              |
| MW3,                                               | MW4,          |             |                |                        |            |                    |                    |                |
| MW6,                                               | SW1,          |             |                |                        |            |                    |                    |                |
| SW2,                                               | QC102,        |             |                |                        |            |                    |                    |                |
| QC302                                              |               |             |                |                        |            |                    |                    |                |
| EP080/071: Total Recoverable Hydrocarbons - NEPM 2 | 013 Fractions |             |                |                        |            |                    |                    |                |
| Amber Glass Bottle - Unpreserved (EP071)           |               |             |                |                        |            |                    |                    |                |
| MW1,                                               | MW2,          | 14-Aug-2023 | 16-Aug-2023    | 21-Aug-2023            | ✓          | 17-Aug-2023        | 25-Sep-2023        | ✓              |
| MW3,                                               | MW4,          |             |                |                        |            |                    |                    |                |
| MW6,                                               | SW1,          |             |                |                        |            |                    |                    |                |
| SW2,                                               | QC102,        |             |                |                        |            |                    |                    |                |
| QC302                                              |               |             |                |                        |            |                    |                    |                |
| Amber VOC Vial - Sulfuric Acid (EP080)             |               |             |                |                        |            |                    |                    |                |
| QC502 - TRIP BLANK                                 |               | 01-Aug-2023 | 14-Aug-2023    | 15-Aug-2023            | ✓          | 14-Aug-2023        | 15-Aug-2023        | ✓              |
| Amber VOC Vial - Sulfuric Acid (EP080)             |               |             |                |                        |            |                    |                    |                |
| MW1,                                               | MW2,          | 14-Aug-2023 | 17-Aug-2023    | 28-Aug-2023            | ✓          | 17-Aug-2023        | 28-Aug-2023        | ✓              |
| MW3,                                               | MW4,          |             |                |                        |            |                    |                    |                |
| MW6,                                               | SW1,          |             |                |                        |            |                    |                    |                |
| SW2,                                               | QC102,        |             |                |                        |            |                    |                    |                |
| QC302                                              |               |             |                |                        |            |                    |                    |                |

Page : 5 of 9

Work Order : ES2327328 Amendment 2
Client : SENVERSA PTY LTD



| Matrix: <b>WATER</b> Evaluation: <b>×</b> = Holding time breach ; ✓ = Within hold |             |                |                        |            |               |                  |            |  |  |
|-----------------------------------------------------------------------------------|-------------|----------------|------------------------|------------|---------------|------------------|------------|--|--|
| Method                                                                            | Sample Date | Ex             | traction / Preparation |            |               | Analysis         |            |  |  |
| Container / Client Sample ID(s)                                                   |             | Date extracted | Due for extraction     | Evaluation | Date analysed | Due for analysis | Evaluation |  |  |
| EP080: BTEXN                                                                      |             |                |                        |            |               |                  |            |  |  |
| Amber VOC Vial - Sulfuric Acid (FP080)                                            |             |                |                        |            |               |                  |            |  |  |

| Amber VOC Vial - Sulfuric Acid (EP080) |             |             |             |   |             |             |   |
|----------------------------------------|-------------|-------------|-------------|---|-------------|-------------|---|
| QC502 - TRIP BLANK                     | 01-Aug-2023 | 14-Aug-2023 | 15-Aug-2023 | ✓ | 14-Aug-2023 | 15-Aug-2023 | ✓ |
| Amber VOC Vial - Sulfuric Acid (EP080) |             |             |             |   |             |             |   |
| MW1, MW2,                              | 14-Aug-2023 | 17-Aug-2023 | 28-Aug-2023 | ✓ | 17-Aug-2023 | 28-Aug-2023 | ✓ |
| MW3,                                   |             |             |             |   |             |             |   |
| MW6, SW1,                              |             |             |             |   |             |             |   |
| SW2, QC102,                            |             |             |             |   |             |             |   |
| QC302                                  |             |             |             |   |             |             |   |
| Amber VOC Vial - Sulfuric Acid (EP080) |             |             |             |   |             |             |   |
| QC402 - TRIP SPIKE                     | 31-Jul-2023 | 14-Aug-2023 | 14-Aug-2023 | ✓ | 14-Aug-2023 | 14-Aug-2023 | ✓ |

Page : 6 of 9

Work Order : ES2327328 Amendment 2
Client : SENVERSA PTY LTD

Project : 20102 REDIRECT WETHERILL PARK



# **Quality Control Parameter Frequency Compliance**

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: WATER

Evaluation: × = Quality Control frequency not within specification: √ = Quality Control frequency within specification.

| Matrix: WATER                                       |            |    | Evaluatio | n: × = Quality Co | ot within specification ; ✓ = Quality Control frequency within specification |            |                                |
|-----------------------------------------------------|------------|----|-----------|-------------------|------------------------------------------------------------------------------|------------|--------------------------------|
| Quality Control Sample Type                         |            |    | ount      |                   | Rate (%)                                                                     |            | Quality Control Specification  |
| Analytical Methods                                  | Method     | QC | Reaular   | Actual            | Expected                                                                     | Evaluation |                                |
| Laboratory Duplicates (DUP)                         |            |    |           |                   |                                                                              |            |                                |
| Ammonia as N by Discrete analyser                   | EK055G     | 2  | 20        | 10.00             | 10.00                                                                        | ✓          | NEPM 2013 B3 & ALS QC Standard |
| Dissolved Mercury by FIMS                           | EG035F     | 2  | 17        | 11.76             | 10.00                                                                        | ✓          | NEPM 2013 B3 & ALS QC Standard |
| Dissolved Metals by ICP-MS - Suite A                | EG020A-F   | 4  | 39        | 10.26             | 10.00                                                                        | ✓          | NEPM 2013 B3 & ALS QC Standard |
| Nitrite and Nitrate as N (NOx) by Discrete Analyser | EK059G     | 2  | 19        | 10.53             | 10.00                                                                        | ✓          | NEPM 2013 B3 & ALS QC Standard |
| Nitrite as N by Discrete Analyser                   | EK057G     | 2  | 16        | 12.50             | 10.00                                                                        | ✓          | NEPM 2013 B3 & ALS QC Standard |
| PAH/Phenols (GC/MS - SIM)                           | EP075(SIM) | 0  | 16        | 0.00              | 10.00                                                                        | ×          | NEPM 2013 B3 & ALS QC Standard |
| pH by Auto Titrator                                 | EA005-P    | 2  | 18        | 11.11             | 10.00                                                                        | ✓          | NEPM 2013 B3 & ALS QC Standard |
| Suspended Solids (High Level)                       | EA025H     | 4  | 40        | 10.00             | 10.00                                                                        | ✓          | NEPM 2013 B3 & ALS QC Standard |
| Total Dissolved Solids (High Level)                 | EA015H     | 4  | 40        | 10.00             | 10.00                                                                        | ✓          | NEPM 2013 B3 & ALS QC Standard |
| Total Kjeldahl Nitrogen as N By Discrete Analyser   | EK061G     | 2  | 19        | 10.53             | 10.00                                                                        | ✓          | NEPM 2013 B3 & ALS QC Standard |
| Total Phosphorus as P By Discrete Analyser          | EK067G     | 2  | 19        | 10.53             | 10.00                                                                        | ✓          | NEPM 2013 B3 & ALS QC Standard |
| TRH - Semivolatile Fraction                         | EP071      | 0  | 18        | 0.00              | 10.00                                                                        | x          | NEPM 2013 B3 & ALS QC Standard |
| TRH Volatiles/BTEX                                  | EP080      | 3  | 25        | 12.00             | 10.00                                                                        | ✓          | NEPM 2013 B3 & ALS QC Standard |
| Laboratory Control Samples (LCS)                    |            |    |           | 1                 |                                                                              |            |                                |
| Ammonia as N by Discrete analyser                   | EK055G     | 1  | 20        | 5.00              | 5.00                                                                         | 1          | NEPM 2013 B3 & ALS QC Standard |
| Dissolved Mercury by FIMS                           | EG035F     | 1  | 17        | 5.88              | 5.00                                                                         | <b>√</b>   | NEPM 2013 B3 & ALS QC Standard |
| Dissolved Metals by ICP-MS - Suite A                | EG020A-F   | 2  | 39        | 5.13              | 5.00                                                                         | 1          | NEPM 2013 B3 & ALS QC Standard |
| Nitrite and Nitrate as N (NOx) by Discrete Analyser | EK059G     | 1  | 19        | 5.26              | 5.00                                                                         | <b>√</b>   | NEPM 2013 B3 & ALS QC Standard |
| Nitrite as N by Discrete Analyser                   | EK057G     | 1  | 16        | 6.25              | 5.00                                                                         | ✓          | NEPM 2013 B3 & ALS QC Standard |
| PAH/Phenols (GC/MS - SIM)                           | EP075(SIM) | 2  | 16        | 12.50             | 5.00                                                                         | ✓          | NEPM 2013 B3 & ALS QC Standard |
| pH by Auto Titrator                                 | EA005-P    | 2  | 18        | 11.11             | 10.00                                                                        | ✓          | NEPM 2013 B3 & ALS QC Standard |
| Suspended Solids (High Level)                       | EA025H     | 5  | 40        | 12.50             | 12.50                                                                        | ✓          | NEPM 2013 B3 & ALS QC Standard |
| Total Dissolved Solids (High Level)                 | EA015H     | 5  | 40        | 12.50             | 12.50                                                                        | ✓          | NEPM 2013 B3 & ALS QC Standard |
| Total Kjeldahl Nitrogen as N By Discrete Analyser   | EK061G     | 3  | 19        | 15.79             | 15.00                                                                        | ✓          | NEPM 2013 B3 & ALS QC Standard |
| Total Phosphorus as P By Discrete Analyser          | EK067G     | 3  | 19        | 15.79             | 15.00                                                                        | ✓          | NEPM 2013 B3 & ALS QC Standard |
| TRH - Semivolatile Fraction                         | EP071      | 2  | 18        | 11.11             | 5.00                                                                         | ✓          | NEPM 2013 B3 & ALS QC Standard |
| TRH Volatiles/BTEX                                  | EP080      | 2  | 25        | 8.00              | 5.00                                                                         | ✓          | NEPM 2013 B3 & ALS QC Standard |
| Method Blanks (MB)                                  |            |    | 1         |                   |                                                                              |            |                                |
| Ammonia as N by Discrete analyser                   | EK055G     | 1  | 20        | 5.00              | 5.00                                                                         | ✓          | NEPM 2013 B3 & ALS QC Standard |
| Dissolved Mercury by FIMS                           | EG035F     | 1  | 17        | 5.88              | 5.00                                                                         | 1          | NEPM 2013 B3 & ALS QC Standard |
| Dissolved Metals by ICP-MS - Suite A                | EG020A-F   | 2  | 39        | 5.13              | 5.00                                                                         | ✓          | NEPM 2013 B3 & ALS QC Standard |
| Nitrite and Nitrate as N (NOx) by Discrete Analyser | EK059G     | 1  | 19        | 5.26              | 5.00                                                                         | 1          | NEPM 2013 B3 & ALS QC Standard |
| Nitrite as N by Discrete Analyser                   | EK057G     | 1  | 16        | 6.25              | 5.00                                                                         | 1          | NEPM 2013 B3 & ALS QC Standard |
| PAH/Phenols (GC/MS - SIM)                           | EP075(SIM) | 2  | 16        | 12.50             | 5.00                                                                         | ✓          | NEPM 2013 B3 & ALS QC Standard |
| Suspended Solids (High Level)                       | EA025H     | 2  | 40        | 5.00              | 5.00                                                                         | 1          | NEPM 2013 B3 & ALS QC Standard |
| Total Dissolved Solids (High Level)                 | EA015H     | 2  | 40        | 5.00              | 5.00                                                                         | 1          | NEPM 2013 B3 & ALS QC Standard |

Page : 7 of 9

Work Order : ES2327328 Amendment 2
Client : SENVERSA PTY LTD



| Matrix: <b>WATER</b> Evaluation: <b>x</b> = Quality Control frequency not within specification; ✓ = Quality Control frequency within specification. |            |    |         |        |          |            |                                |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|------------|----|---------|--------|----------|------------|--------------------------------|--|--|--|
| Quality Control Sample Type                                                                                                                         |            | Co | unt     |        | Rate (%) |            | Quality Control Specification  |  |  |  |
| Analytical Methods                                                                                                                                  | Method     | QC | Regular | Actual | Expected | Evaluation |                                |  |  |  |
| Method Blanks (MB) - Continued                                                                                                                      |            |    |         |        |          |            |                                |  |  |  |
| Total Kjeldahl Nitrogen as N By Discrete Analyser                                                                                                   | EK061G     | 1  | 19      | 5.26   | 5.00     | ✓          | NEPM 2013 B3 & ALS QC Standard |  |  |  |
| Total Phosphorus as P By Discrete Analyser                                                                                                          | EK067G     | 1  | 19      | 5.26   | 5.00     | ✓          | NEPM 2013 B3 & ALS QC Standard |  |  |  |
| TRH - Semivolatile Fraction                                                                                                                         | EP071      | 2  | 18      | 11.11  | 5.00     | ✓          | NEPM 2013 B3 & ALS QC Standard |  |  |  |
| TRH Volatiles/BTEX                                                                                                                                  | EP080      | 2  | 25      | 8.00   | 5.00     | ✓          | NEPM 2013 B3 & ALS QC Standard |  |  |  |
| Matrix Spikes (MS)                                                                                                                                  |            |    |         |        |          |            |                                |  |  |  |
| Ammonia as N by Discrete analyser                                                                                                                   | EK055G     | 1  | 20      | 5.00   | 5.00     | ✓          | NEPM 2013 B3 & ALS QC Standard |  |  |  |
| Dissolved Mercury by FIMS                                                                                                                           | EG035F     | 1  | 17      | 5.88   | 5.00     | ✓          | NEPM 2013 B3 & ALS QC Standard |  |  |  |
| Dissolved Metals by ICP-MS - Suite A                                                                                                                | EG020A-F   | 2  | 39      | 5.13   | 5.00     | ✓          | NEPM 2013 B3 & ALS QC Standard |  |  |  |
| Nitrite and Nitrate as N (NOx) by Discrete Analyser                                                                                                 | EK059G     | 1  | 19      | 5.26   | 5.00     | ✓          | NEPM 2013 B3 & ALS QC Standard |  |  |  |
| Nitrite as N by Discrete Analyser                                                                                                                   | EK057G     | 1  | 16      | 6.25   | 5.00     | ✓          | NEPM 2013 B3 & ALS QC Standard |  |  |  |
| PAH/Phenols (GC/MS - SIM)                                                                                                                           | EP075(SIM) | 0  | 16      | 0.00   | 5.00     | ×          | NEPM 2013 B3 & ALS QC Standard |  |  |  |
| Total Kjeldahl Nitrogen as N By Discrete Analyser                                                                                                   | EK061G     | 1  | 19      | 5.26   | 5.00     | ✓          | NEPM 2013 B3 & ALS QC Standard |  |  |  |
| Total Phosphorus as P By Discrete Analyser                                                                                                          | EK067G     | 1  | 19      | 5.26   | 5.00     | ✓          | NEPM 2013 B3 & ALS QC Standard |  |  |  |
| TRH - Semivolatile Fraction                                                                                                                         | EP071      | 0  | 18      | 0.00   | 5.00     | se         | NEPM 2013 B3 & ALS QC Standard |  |  |  |
| TRH Volatiles/BTEX                                                                                                                                  | EP080      | 2  | 25      | 8.00   | 5.00     | ✓          | NEPM 2013 B3 & ALS QC Standard |  |  |  |

Page : 8 of 9

Work Order : ES2327328 Amendment 2
Client : SENVERSA PTY LTD

Project : 20102 REDIRECT WETHERILL PARK



#### **Brief Method Summaries**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

| Analytical Methods                         | Method   | Matrix | Method Descriptions                                                                                                    |
|--------------------------------------------|----------|--------|------------------------------------------------------------------------------------------------------------------------|
| pH by Auto Titrator                        | EA005-P  | WATER  | In house: Referenced to APHA 4500 H+ B. This procedure determines pH of water samples by automated ISE.                |
|                                            |          |        | This method is compliant with NEPM Schedule B(3)                                                                       |
| Total Dissolved Solids (High Level)        | EA015H   | WATER  | In house: Referenced to APHA 2540C. A gravimetric procedure that determines the amount of `filterable` residue         |
|                                            |          |        | in an aqueous sample. A well-mixed sample is filtered through a glass fibre filter (1.2um). The filtrate is            |
|                                            |          |        | evaporated to dryness and dried to constant weight at 180+/-5C. This method is compliant with NEPM Schedule            |
|                                            |          |        | B(3)                                                                                                                   |
| Suspended Solids (High Level)              | EA025H   | WATER  | In house: Referenced to APHA 2540D. A gravimetric procedure employed to determine the amount of                        |
|                                            |          |        | `non-filterable` residue in a aqueous sample. The prescribed GFC (1.2um) filter is rinsed with deionised water,        |
|                                            |          |        | oven dried and weighed prior to analysis. A well-mixed sample is filtered through a glass fibre filter (1.2um).        |
|                                            |          |        | The residue on the filter paper is dried at 104+/-2C . This method is compliant with NEPM Schedule B(3)                |
| Dissolved Metals by ICP-MS - Suite A       | EG020A-F | WATER  | In house: Referenced to APHA 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020. Samples are 0.45µm filtered                   |
|                                            |          |        | prior to analysis. The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions      |
|                                            |          |        | are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct             |
|                                            |          |        | mass to charge ratios prior to their measurement by a discrete dynode ion detector.                                    |
| Dissolved Mercury by FIMS                  | EG035F   | WATER  | In house: Referenced to APHA 3112 Hg - B (Flow-injection (SnCl2)(Cold Vapour generation) AAS) Samples are              |
|                                            |          |        | 0.45µm filtered prior to analysis. FIM-AAS is an automated flameless atomic absorption technique. A                    |
|                                            |          |        | bromate/bromide reagent is used to oxidise any organic mercury compounds in the filtered sample. The ionic             |
|                                            |          |        | mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell.            |
|                                            |          |        | Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM              |
|                                            |          |        | Schedule B(3).                                                                                                         |
| Ammonia as N by Discrete analyser          | EK055G   | WATER  | In house: Referenced to APHA 4500-NH3 G Ammonia is determined by direct colorimetry by Discrete Analyser.              |
|                                            |          |        | This method is compliant with NEPM Schedule B(3)                                                                       |
| Nitrite as N by Discrete Analyser          | EK057G   | WATER  | In house: Referenced to APHA 4500-NO2- B. Nitrite is determined by direct colourimetry by Discrete Analyser.           |
|                                            |          |        | This method is compliant with NEPM Schedule B(3)                                                                       |
| Nitrate as N by Discrete Analyser          | EK058G   | WATER  | In house: Referenced to APHA 4500-NO3- F. Nitrate is reduced to nitrite by way of a chemical reduction followed        |
|                                            |          |        | by quantification by Discrete Analyser. Nitrite is determined seperately by direct colourimetry and result for Nitrate |
|                                            |          |        | calculated as the difference between the two results. This method is compliant with NEPM Schedule B(3)                 |
| Nitrite and Nitrate as N (NOx) by Discrete | EK059G   | WATER  | In house: Referenced to APHA 4500-NO3- F. Combined oxidised Nitrogen (NO2+NO3) is determined by                        |
| Analyser                                   |          |        | Chemical Reduction and direct colourimetry by Discrete Analyser. This method is compliant with NEPM                    |
|                                            |          |        | Schedule B(3)                                                                                                          |
| Total Kjeldahl Nitrogen as N By Discrete   | EK061G   | WATER  | In house: Referenced to APHA 4500-Norg D (In house). An aliquot of sample is digested using a high                     |
| Analyser                                   |          |        | temperature Kjeldahl digestion to convert nitrogenous compounds to ammonia. Ammonia is determined                      |
|                                            |          |        | colorimetrically by discrete analyser. This method is compliant with NEPM Schedule B(3)                                |
| Total Nitrogen as N (TKN + Nox) By         | EK062G   | WATER  | In house: Referenced to APHA 4500-Norg / 4500-NO3 This method is compliant with NEPM Schedule B(3)                     |
| Discrete Analyser                          |          |        |                                                                                                                        |

Page : 9 of 9

Work Order : ES2327328 Amendment 2
Client : SENVERSA PTY LTD



| Analytical Methods                            | Method      | Matrix | Method Descriptions                                                                                                                                                                                                                                                                                                                                                                                                           |
|-----------------------------------------------|-------------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Total Phosphorus as P By Discrete<br>Analyser | EK067G      | WATER  | In house: Referenced to APHA 4500-P H, Jirka et al, Zhang et al. This procedure involves sulphuric acid digestion of a sample aliquot to break phosphorus down to orthophosphate. The orthophosphate reacts with ammonium molybdate and antimony potassium tartrate to form a complex which is then reduced and its concentration measured at 880nm using discrete analyser. This method is compliant with NEPM Schedule B(3) |
| TRH - Semivolatile Fraction                   | EP071       | WATER  | In house: Referenced to USEPA SW 846 - 8015 The sample extract is analysed by Capillary GC/FID and quantification is by comparison against an established 5 point calibration curve of n-Alkane standards. This method is compliant with the QC requirements of NEPM Schedule B(3)                                                                                                                                            |
| PAH/Phenols (GC/MS - SIM)                     | EP075(SIM)  | WATER  | In house: Referenced to USEPA SW 846 - 8270 Sample extracts are analysed by Capillary GC/MS in SIM Mode and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM Schedule B(3)                                                                                                                                                                                |
| TRH Volatiles/BTEX                            | EP080       | WATER  | In house: Referenced to USEPA SW 846 - 8260 Water samples are directly purged prior to analysis by Capillary GC/MS and quantification is by comparison against an established 5 point calibration curve. Alternatively, a sample is equilibrated in a headspace vial and a portion of the headspace determined by GCMS analysis. This method is compliant with the QC requirements of NEPM Schedule B(3)                      |
| Preparation Methods                           | Method      | Matrix | Method Descriptions                                                                                                                                                                                                                                                                                                                                                                                                           |
| TKN/TP Digestion                              | EK061/EK067 | WATER  | In house: Referenced to APHA 4500 Norg - D; APHA 4500 P - H. This method is compliant with NEPM Schedule B(3)                                                                                                                                                                                                                                                                                                                 |
| Separatory Funnel Extraction of Liquids       | ORG14       | WATER  | In house: Referenced to USEPA SW 846 - 3510 100 mL to 1L of sample is transferred to a separatory funnel and serially extracted three times using DCM for each extract. The resultant extracts are combined, dehydrated and concentrated for analysis. This method is compliant with NEPM Schedule B(3). ALS default excludes sediment which may be resident in the container.                                                |
| Volatiles Water Preparation                   | ORG16-W     | WATER  | A 5 mL aliquot or 5 mL of a diluted sample is added to a 40 mL VOC vial for purging.                                                                                                                                                                                                                                                                                                                                          |



#### **QUALITY CONTROL REPORT**

Work Order : **ES2327328** Page : 1 of 11

Amendment : 2

Client : SENVERSA PTY LTD Laboratory : Environmental Division Sydney

Contact : BEC CHAPPLE Contact : Khaleda Ataei

Address : Level 24, 1 Market St, Sydney NSW 2000 Address : 277-289 Woodpark Road Smithfield NSW Australia 2164

SYDNEY NSW 2000

Telephone : ---- Telephone : + 61 2 8784 8555

Project : 20102 REDIRECT WETHERILL PARK Date Samples Received : 14-Aug-2023

Order number Date Analysis Commenced : 14-Aug-2023

Sampler : Hayley Yellowlees

Site : ----

Quote number : EN/103/21

No. of samples received : 11

No. of samples analysed : 11

Accreditation No. 825
Accredited for compliance with ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

Issue Date

· 23-Aug-2023

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

#### **Signatories**

C-O-C number

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Alex Rossi Organic Chemist Sydney Organics, Smithfield, NSW Wisam Marassa Inorganics Coordinator Sydney Inorganics, Smithfield, NSW

Page : 2 of 11

Work Order : ES2327328 Amendment 2
Client : SENVERSA PTY LTD

Project : 20102 REDIRECT WETHERILL PARK



#### General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

# = Indicates failed QC

#### Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR: 0% - 50%; Result > 20 times LOR: 0% - 20%.

| Sub-Matrix: WATER    |                                |                                       |            | Laboratory Duplicate (DUP) Report |         |                 |                  |         |                    |
|----------------------|--------------------------------|---------------------------------------|------------|-----------------------------------|---------|-----------------|------------------|---------|--------------------|
| Laboratory sample ID | Sample ID                      | Method: Compound                      | CAS Number | LOR                               | Unit    | Original Result | Duplicate Result | RPD (%) | Acceptable RPD (%) |
| EA005P: pH by PC     | Fitrator (QC Lot: 5233621)     |                                       |            |                                   |         |                 |                  |         |                    |
| ES2327282-001        | Anonymous                      | EA005-P: pH Value                     |            | 0.01                              | pH Unit | 7.64            | 7.72             | 1.0     | 0% - 20%           |
| ES2327333-005        | Anonymous                      | EA005-P: pH Value                     |            | 0.01                              | pH Unit | 7.64            | 7.67             | 0.4     | 0% - 20%           |
| EA015: Total Dissol  | ved Solids dried at 180 ± 5 °C | C (QC Lot: 5239101)                   |            |                                   |         |                 |                  |         |                    |
| ES2327006-001        | Anonymous                      | EA015H: Total Dissolved Solids @180°C |            | 10                                | mg/L    | 160             | 157              | 1.9     | 0% - 50%           |
| ES2327035-005        | Anonymous                      | EA015H: Total Dissolved Solids @180°C |            | 10                                | mg/L    | 47200000 μg/L   | 44600            | 5.5     | 0% - 20%           |
| ES2327110-001        | Anonymous                      | EA015H: Total Dissolved Solids @180°C |            | 10                                | mg/L    | 1680            | 1580             | 5.9     | 0% - 20%           |
| EW2303543-002        | Anonymous                      | EA015H: Total Dissolved Solids @180°C |            | 10                                | mg/L    | 530             | 537              | 1.3     | 0% - 20%           |
| EA025: Total Suspe   | nded Solids dried at 104 ± 2°  | °C (QC Lot: 5239102)                  |            |                                   |         |                 |                  |         |                    |
| ES2327006-001        | Anonymous                      | EA025H: Suspended Solids (SS)         |            | 5                                 | mg/L    | <5              | <5               | 0.0     | No Limit           |
| ES2327035-005        | Anonymous                      | EA025H: Suspended Solids (SS)         |            | 5                                 | mg/L    | 30000 μg/L      | 43               | 34.8    | No Limit           |
| ES2327110-001        | Anonymous                      | EA025H: Suspended Solids (SS)         |            | 5                                 | mg/L    | 356             | 310              | 14.0    | 0% - 20%           |
| EW2303543-002        | Anonymous                      | EA025H: Suspended Solids (SS)         |            | 5                                 | mg/L    | <5              | <5               | 0.0     | No Limit           |
| EG020F: Dissolved    | Metals by ICP-MS (QC Lot: 8    | 5236663)                              |            |                                   |         |                 |                  |         |                    |
| ES2327041-001        | Anonymous                      | EG020A-F: Cadmium                     | 7440-43-9  | 0.0001                            | mg/L    | <0.0001         | <0.0001          | 0.0     | No Limit           |
|                      |                                | EG020A-F: Arsenic                     | 7440-38-2  | 0.001                             | mg/L    | <0.001          | <0.001           | 0.0     | No Limit           |
|                      |                                | EG020A-F: Chromium                    | 7440-47-3  | 0.001                             | mg/L    | 0.001           | 0.001            | 0.0     | No Limit           |
|                      |                                | EG020A-F: Copper                      | 7440-50-8  | 0.001                             | mg/L    | 0.002           | 0.002            | 0.0     | No Limit           |
|                      |                                | EG020A-F: Lead                        | 7439-92-1  | 0.001                             | mg/L    | <0.001          | <0.001           | 0.0     | No Limit           |
|                      |                                | EG020A-F: Manganese                   | 7439-96-5  | 0.001                             | mg/L    | 0.022           | 0.022            | 0.0     | 0% - 20%           |
|                      |                                | EG020A-F: Nickel                      | 7440-02-0  | 0.001                             | mg/L    | <0.001          | <0.001           | 0.0     | No Limit           |
|                      |                                | EG020A-F: Zinc                        | 7440-66-6  | 0.005                             | mg/L    | 0.088           | 0.088            | 0.0     | 0% - 50%           |
|                      |                                | EG020A-F: Iron                        | 7439-89-6  | 0.05                              | mg/L    | 0.18            | 0.18             | 0.0     | No Limit           |
| ES2327081-001        | Anonymous                      | EG020A-F: Cadmium                     | 7440-43-9  | 0.0001                            | mg/L    | <0.0001         | <0.0001          | 0.0     | No Limit           |

Page : 3 of 11

Work Order : ES2327328 Amendment 2
Client : SENVERSA PTY LTD



| Sub-Matrix: WATER    |                      |                                        |            |        |      | Laboratory I    | Duplicate (DUP) Report |         |                    |
|----------------------|----------------------|----------------------------------------|------------|--------|------|-----------------|------------------------|---------|--------------------|
| Laboratory sample ID | Sample ID            | Method: Compound                       | CAS Number | LOR    | Unit | Original Result | Duplicate Result       | RPD (%) | Acceptable RPD (%) |
| EG020F: Dissolved    | Metals by ICP-MS (Q  | C Lot: 5236663) - continued            |            |        |      |                 |                        |         |                    |
| ES2327081-001        | Anonymous            | EG020A-F: Arsenic                      | 7440-38-2  | 0.001  | mg/L | 0.002           | 0.002                  | 0.0     | No Limit           |
|                      |                      | EG020A-F: Chromium                     | 7440-47-3  | 0.001  | mg/L | 0.002           | 0.002                  | 0.0     | No Limit           |
|                      |                      | EG020A-F: Copper                       | 7440-50-8  | 0.001  | mg/L | <0.001          | <0.001                 | 0.0     | No Limit           |
|                      |                      | EG020A-F: Lead                         | 7439-92-1  | 0.001  | mg/L | <0.001          | <0.001                 | 0.0     | No Limit           |
|                      |                      | EG020A-F: Manganese                    | 7439-96-5  | 0.001  | mg/L | 0.104           | 0.099                  | 4.9     | 0% - 20%           |
|                      |                      | EG020A-F: Nickel                       | 7440-02-0  | 0.001  | mg/L | 0.006           | 0.005                  | 0.0     | No Limit           |
|                      |                      | EG020A-F: Zinc                         | 7440-66-6  | 0.005  | mg/L | <0.005          | <0.005                 | 0.0     | No Limit           |
|                      |                      | EG020A-F: Iron                         | 7439-89-6  | 0.05   | mg/L | <0.05           | <0.05                  | 0.0     | No Limit           |
| EG020F: Dissolved    | Metals by ICP-MS (Q  | C Lot: 5236666)                        |            |        |      |                 |                        |         |                    |
| EW2303610-001        | Anonymous            | EG020A-F: Cadmium                      | 7440-43-9  | 0.0001 | mg/L | <0.0001         | <0.0001                | 0.0     | No Limit           |
|                      |                      | EG020A-F: Arsenic                      | 7440-38-2  | 0.001  | mg/L | <0.001          | <0.001                 | 0.0     | No Limit           |
|                      |                      | EG020A-F: Chromium                     | 7440-47-3  | 0.001  | mg/L | <0.001          | <0.001                 | 0.0     | No Limit           |
|                      |                      | EG020A-F: Copper                       | 7440-50-8  | 0.001  | mg/L | <0.001          | <0.001                 | 0.0     | No Limit           |
|                      |                      | EG020A-F: Lead                         | 7439-92-1  | 0.001  | mg/L | <0.001          | <0.001                 | 0.0     | No Limit           |
|                      |                      | EG020A-F: Manganese                    | 7439-96-5  | 0.001  | mg/L | 0.060           | 0.060                  | 1.7     | 0% - 20%           |
|                      |                      | EG020A-F: Nickel                       | 7440-02-0  | 0.001  | mg/L | <0.001          | <0.001                 | 0.0     | No Limit           |
|                      |                      | EG020A-F: Zinc                         | 7440-66-6  | 0.005  | mg/L | <0.005          | <0.005                 | 0.0     | No Limit           |
|                      |                      | EG020A-F: Iron                         | 7439-89-6  | 0.05   | mg/L | 0.07            | 0.07                   | 0.0     | No Limit           |
| EW2303629-005        | Anonymous            | EG020A-F: Cadmium                      | 7440-43-9  | 0.0001 | mg/L | <0.0001         | <0.0001                | 0.0     | No Limit           |
|                      |                      | EG020A-F: Arsenic                      | 7440-38-2  | 0.001  | mg/L | <0.001          | <0.001                 | 0.0     | No Limit           |
|                      |                      | EG020A-F: Chromium                     | 7440-47-3  | 0.001  | mg/L | <0.001          | <0.001                 | 0.0     | No Limit           |
|                      |                      | EG020A-F: Copper                       | 7440-50-8  | 0.001  | mg/L | <0.001          | <0.001                 | 0.0     | No Limit           |
|                      |                      | EG020A-F: Lead                         | 7439-92-1  | 0.001  | mg/L | <0.001          | <0.001                 | 0.0     | No Limit           |
|                      |                      | EG020A-F: Manganese                    | 7439-96-5  | 0.001  | mg/L | 0.050           | 0.051                  | 2.2     | 0% - 20%           |
|                      |                      | EG020A-F: Nickel                       | 7440-02-0  | 0.001  | mg/L | <0.001          | <0.001                 | 0.0     | No Limit           |
|                      |                      | EG020A-F: Zinc                         | 7440-66-6  | 0.005  | mg/L | <0.005          | <0.005                 | 0.0     | No Limit           |
|                      |                      | EG020A-F: Iron                         | 7439-89-6  | 0.05   | mg/L | 0.13            | 0.22                   | 47.9    | No Limit           |
| EG035F: Dissolved    | Mercury by FIMS (Q   | C Lot: 5236665)                        |            |        |      |                 |                        |         |                    |
| ES2327080-002        | Anonymous            | EG035F: Mercury                        | 7439-97-6  | 0.0001 | mg/L | <0.0001         | <0.0001                | 0.0     | No Limit           |
| ES2327328-002        | MW2                  | EG035F: Mercury                        | 7439-97-6  | 0.0001 | mg/L | <0.0001         | <0.0001                | 0.0     | No Limit           |
| EK055G: Ammonia      | as N by Discrete Ana | lyser (QC Lot: 5238030)                |            |        |      |                 |                        |         |                    |
| ES2327281-001        | Anonymous            | EK055G: Ammonia as N                   | 7664-41-7  | 0.01   | mg/L | 0.02            | 0.02                   | 0.0     | No Limit           |
| ES2327328-003        | MW3                  | EK055G: Ammonia as N                   | 7664-41-7  | 0.01   | mg/L | 0.29            | 0.29                   | 0.0     | 0% - 20%           |
| EK057G: Nitrite as   | N by Discrete Analys | er (QC Lot: 5237562)                   |            |        |      |                 |                        |         |                    |
| ES2327328-003        | MW3                  | EK057G: Nitrite as N                   | 14797-65-0 | 0.01   | mg/L | <0.01           | <0.01                  | 0.0     | No Limit           |
| ES2327281-001        | Anonymous            | EK057G: Nitrite as N                   | 14797-65-0 | 0.01   | mg/L | <0.01           | <0.01                  | 0.0     | No Limit           |
| EK059G: Nitrite plu  | s Nitrate as N (NQx) | by Discrete Analyser (QC Lot: 5238031) |            |        |      |                 |                        |         |                    |
| ES2327281-001        | Anonymous            | EK059G: Nitrite + Nitrate as N         |            | 0.01   | mg/L | 0.09            | 0.09                   | 0.0     | No Limit           |
| ES2327328-003        | MW3                  | EK059G: Nitrite + Nitrate as N         |            | 0.01   | mg/L | <0.01           | <0.01                  | 0.0     | No Limit           |
|                      | 1                    | LINOSO. INITIO - INITIALE AS IN        |            |        |      | 3.0.            |                        |         |                    |

Page : 4 of 11

Work Order : ES2327328 Amendment 2
Client : SENVERSA PTY LTD



| Sub-Matrix: WATER    |                       |                                              |            |      |        | Laboratory I    | Duplicate (DUP) Report |         |                    |
|----------------------|-----------------------|----------------------------------------------|------------|------|--------|-----------------|------------------------|---------|--------------------|
| Laboratory sample ID | Sample ID             | Method: Compound                             | CAS Number | LOR  | Unit   | Original Result | Duplicate Result       | RPD (%) | Acceptable RPD (%) |
| EK061G: Total Kjelo  | lahl Nitrogen By Disc | rete Analyser (QC Lot: 5238027)              |            |      |        |                 |                        |         |                    |
| ES2327281-001        | Anonymous             | EK061G: Total Kjeldahl Nitrogen as N         |            | 0.1  | mg/L   | 0.9             | 0.9                    | 0.0     | No Limit           |
| ES2327328-002        | MW2                   | EK061G: Total Kjeldahl Nitrogen as N         |            | 0.1  | mg/L   | 0.6             | 0.6                    | 0.0     | No Limit           |
| EK067G: Total Phos   | phorus as P by Disc   | rete Analyser (QC Lot: 5238026)              |            |      |        |                 |                        |         |                    |
| ES2327281-001        | Anonymous             | EK067G: Total Phosphorus as P                |            | 0.01 | mg/L   | 0.04            | 0.04                   | 0.0     | No Limit           |
| ES2327328-002        | MW2                   | EK067G: Total Phosphorus as P                |            | 0.01 | mg/L   | 0.04            | 0.04                   | 0.0     | No Limit           |
| EP080/071: Total Pe  | troleum Hydrocarboi   | ns (QC Lot: 5233625)                         |            |      |        |                 |                        |         |                    |
| ES2327291-001        | Anonymous             | EP080: C6 - C9 Fraction                      |            | 20   | μg/L   | <20             | <20                    | 0.0     | No Limit           |
| EP080/071: Total Pe  | troleum Hydrocarboi   | ns (QC Lot: 5236018)                         |            |      |        |                 |                        |         |                    |
| ES2327093-001        | Anonymous             | EP080: C6 - C9 Fraction                      |            | 20   | μg/L   | <20             | <20                    | 0.0     | No Limit           |
| ES2327167-001        | Anonymous             | EP080: C6 - C9 Fraction                      |            | 20   | μg/L   | <20             | <20                    | 0.0     | No Limit           |
| EP080/071: Total Re  |                       | oons - NEPM 2013 Fractions (QC Lot: 5233625) |            |      |        |                 |                        |         |                    |
| ES2327291-001        | Anonymous             | EP080: C6 - C10 Fraction                     | C6 C10     | 20   | μg/L   | <20             | <20                    | 0.0     | No Limit           |
|                      | -                     | pons - NEPM 2013 Fractions (QC Lot: 5236018) |            |      |        |                 |                        |         |                    |
| ES2327093-001        | Anonymous             | EP080: C6 - C10 Fraction                     | C6 C10     | 20   | μg/L   | <20             | <20                    | 0.0     | No Limit           |
| ES2327167-001        | Anonymous             | EP080: C6 - C10 Fraction                     | C6 C10     | 20   | μg/L   | <20             | <20                    | 0.0     | No Limit           |
| EP080: BTEXN (QC     |                       | El 000. 00 Giorradion                        |            |      | p.5. = |                 |                        |         |                    |
| ES2327291-001        | Anonymous             | EP080: Benzene                               | 71-43-2    | 1    | μg/L   | <1              | <1                     | 0.0     | No Limit           |
| 202027201 001        | 7 thonymous           | EP080: Toluene                               | 108-88-3   | 2    | μg/L   | <2              | <2                     | 0.0     | No Limit           |
|                      |                       | EP080: Ethylbenzene                          | 100-41-4   | 2    | μg/L   | <2              | <2                     | 0.0     | No Limit           |
|                      |                       | EP080: meta- & para-Xylene                   | 108-38-3   | 2    | μg/L   | <2              | <2                     | 0.0     | No Limit           |
|                      |                       | El 666. Hista a para Ayione                  | 106-42-3   |      | 10     |                 |                        |         |                    |
|                      |                       | EP080: ortho-Xylene                          | 95-47-6    | 2    | μg/L   | <2              | <2                     | 0.0     | No Limit           |
|                      |                       | EP080: Naphthalene                           | 91-20-3    | 5    | μg/L   | <5              | <5                     | 0.0     | No Limit           |
| EP080: BTEXN (QC     | Lot: 5236018)         |                                              |            |      |        |                 |                        |         |                    |
| ES2327093-001        | Anonymous             | EP080: Benzene                               | 71-43-2    | 1    | μg/L   | <1              | <1                     | 0.0     | No Limit           |
|                      |                       | EP080: Toluene                               | 108-88-3   | 2    | μg/L   | <2              | <2                     | 0.0     | No Limit           |
|                      |                       | EP080: Ethylbenzene                          | 100-41-4   | 2    | μg/L   | <2              | <2                     | 0.0     | No Limit           |
|                      |                       | EP080: meta- & para-Xylene                   | 108-38-3   | 2    | μg/L   | <2              | <2                     | 0.0     | No Limit           |
|                      |                       |                                              | 106-42-3   |      |        |                 |                        |         |                    |
|                      |                       | EP080: ortho-Xylene                          | 95-47-6    | 2    | μg/L   | <2              | <2                     | 0.0     | No Limit           |
|                      |                       | EP080: Naphthalene                           | 91-20-3    | 5    | μg/L   | <5              | <5                     | 0.0     | No Limit           |
| ES2327167-001        | Anonymous             | EP080: Benzene                               | 71-43-2    | 1    | μg/L   | <1              | <1                     | 0.0     | No Limit           |
|                      |                       | EP080: Toluene                               | 108-88-3   | 2    | μg/L   | <2              | <2                     | 0.0     | No Limit           |
|                      |                       | EP080: Ethylbenzene                          | 100-41-4   | 2    | μg/L   | <2              | <2                     | 0.0     | No Limit           |
|                      |                       | EP080: meta- & para-Xylene                   | 108-38-3   | 2    | μg/L   | <2              | <2                     | 0.0     | No Limit           |
|                      |                       |                                              | 106-42-3   |      |        | _               | _                      |         |                    |
|                      |                       | EP080: ortho-Xylene                          | 95-47-6    | 2    | μg/L   | <2              | <2                     | 0.0     | No Limit           |
|                      |                       | EP080: Naphthalene                           | 91-20-3    | 5    | μg/L   | <5              | <5                     | 0.0     | No Limit           |

Page : 5 of 11

Work Order : ES2327328 Amendment 2
Client : SENVERSA PTY LTD

Project : 20102 REDIRECT WETHERILL PARK



#### Method Blank (MB) and Laboratory Control Sample (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

| Sub-Matrix: WATER                                            |            |        |         | Method Blank (MB) |               | Laboratory Control Spike (LC | S) Report  |            |
|--------------------------------------------------------------|------------|--------|---------|-------------------|---------------|------------------------------|------------|------------|
|                                                              |            |        |         | Report            | Spike         | Spike Recovery (%)           | Acceptable | Limits (%) |
| Method: Compound                                             | CAS Number | LOR    | Unit    | Result            | Concentration | LCS                          | Low        | High       |
| EA005P: pH by PC Titrator (QCLot: 5233621)                   |            |        |         |                   |               |                              |            |            |
| EA005-P: pH Value                                            |            |        | pH Unit |                   | 4 pH Unit     | 99.8                         | 98.8       | 101        |
|                                                              |            |        |         |                   | 7 pH Unit     | 99.8                         | 99.2       | 101        |
| EA015: Total Dissolved Solids dried at 180 ± 5 °C (QCLot: 52 | 239101)    |        |         |                   |               |                              |            |            |
| EA015H: Total Dissolved Solids @180°C                        |            | 10     | mg/L    | <10               | 2000 mg/L     | 101                          | 87.0       | 109        |
|                                                              |            |        |         | <10               | 293 mg/L      | 102                          | 75.2       | 126        |
|                                                              |            |        |         | <10               | 2380 mg/L     | 103                          | 83.0       | 124        |
| EA025: Total Suspended Solids dried at 104 ± 2°C (QCLot: 5   | 239102)    |        |         |                   |               |                              |            |            |
| EA025H: Suspended Solids (SS)                                |            | 5      | mg/L    | <5                | 150 mg/L      | 102                          | 83.0       | 129        |
|                                                              |            |        |         | <5                | 1000 mg/L     | 98.0                         | 82.0       | 110        |
|                                                              |            |        |         | <5                | 931 mg/L      | 102                          | 83.0       | 118        |
| EG020F: Dissolved Metals by ICP-MS (QCLot: 5236663)          |            |        |         |                   |               |                              |            |            |
| EG020A-F: Arsenic                                            | 7440-38-2  | 0.001  | mg/L    | <0.001            | 0.1 mg/L      | 96.1                         | 85.0       | 114        |
| EG020A-F: Cadmium                                            | 7440-43-9  | 0.0001 | mg/L    | <0.0001           | 0.1 mg/L      | 98.0                         | 84.0       | 110        |
| EG020A-F: Chromium                                           | 7440-47-3  | 0.001  | mg/L    | <0.001            | 0.1 mg/L      | 96.0                         | 85.0       | 111        |
| EG020A-F: Copper                                             | 7440-50-8  | 0.001  | mg/L    | <0.001            | 0.1 mg/L      | 98.5                         | 81.0       | 111        |
| EG020A-F: Lead                                               | 7439-92-1  | 0.001  | mg/L    | <0.001            | 0.1 mg/L      | 93.8                         | 83.0       | 111        |
| EG020A-F: Manganese                                          | 7439-96-5  | 0.001  | mg/L    | <0.001            | 0.1 mg/L      | 101                          | 82.0       | 110        |
| EG020A-F: Nickel                                             | 7440-02-0  | 0.001  | mg/L    | <0.001            | 0.1 mg/L      | 94.1                         | 82.0       | 112        |
| EG020A-F: Zinc                                               | 7440-66-6  | 0.005  | mg/L    | <0.005            | 0.1 mg/L      | 103                          | 81.0       | 117        |
| EG020A-F: Iron                                               | 7439-89-6  | 0.05   | mg/L    | <0.05             | 0.5 mg/L      | 99.4                         | 82.0       | 112        |
| EG020F: Dissolved Metals by ICP-MS (QCLot: 5236666)          |            |        |         |                   |               |                              |            |            |
| EG020A-F: Arsenic                                            | 7440-38-2  | 0.001  | mg/L    | <0.001            | 0.1 mg/L      | 100                          | 85.0       | 114        |
| EG020A-F: Cadmium                                            | 7440-43-9  | 0.0001 | mg/L    | <0.0001           | 0.1 mg/L      | 95.8                         | 84.0       | 110        |
| EG020A-F: Chromium                                           | 7440-47-3  | 0.001  | mg/L    | <0.001            | 0.1 mg/L      | 93.9                         | 85.0       | 111        |
| EG020A-F: Copper                                             | 7440-50-8  | 0.001  | mg/L    | <0.001            | 0.1 mg/L      | 101                          | 81.0       | 111        |
| EG020A-F: Lead                                               | 7439-92-1  | 0.001  | mg/L    | <0.001            | 0.1 mg/L      | 93.8                         | 83.0       | 111        |
| EG020A-F: Manganese                                          | 7439-96-5  | 0.001  | mg/L    | <0.001            | 0.1 mg/L      | 99.1                         | 82.0       | 110        |
| EG020A-F: Nickel                                             | 7440-02-0  | 0.001  | mg/L    | <0.001            | 0.1 mg/L      | 96.0                         | 82.0       | 112        |
| EG020A-F: Zinc                                               | 7440-66-6  | 0.005  | mg/L    | <0.005            | 0.1 mg/L      | 106                          | 81.0       | 117        |
| EG020A-F: Iron                                               | 7439-89-6  | 0.05   | mg/L    | <0.05             | 0.5 mg/L      | 97.7                         | 82.0       | 112        |
| EG035F: Dissolved Mercury by FIMS (QCLot: 5236665)           | 1 .00 00 0 | 3.33   | 9. =    | 3.55              | 0.09.2        | 31.1                         | 32.0       | 114        |

Page : 6 of 11

Work Order : ES2327328 Amendment 2
Client : SENVERSA PTY LTD



| EG035F: Dissolved Mercury by FIMS (QCLot: 5236665) - continue EG035F: Mercury 743:  EK055G: Ammonia as N by Discrete Analyser (QCLot: 5238030)  EK055G: Ammonia as N 7666  EK057G: Nitrite as N by Discrete Analyser (QCLot: 5237562)  EK057G: Nitrite as N 1479  | 9-97-6<br>4-41-7<br>7-65-0 | 0.0001<br>0.001<br>0.01 | Unit  mg/L  mg/L  mg/L | Report     Result     < 0.0001     < 0.01 | Spike Concentration  0.01 mg/L  1 mg/L | Spike Recovery (%) LCS 92.8 | Low<br>83.0 | Limits (%) High 105 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-------------------------|------------------------|-------------------------------------------|----------------------------------------|-----------------------------|-------------|---------------------|
| EG035F: Dissolved Mercury by FIMS (QCLot: 5236665) - continue EG035F: Mercury 743:  EK055G: Ammonia as N by Discrete Analyser (QCLot: 5238030)  EK055G: Ammonia as N 7666  EK057G: Nitrite as N by Discrete Analyser (QCLot: 5237562)  EK057G: Nitrite as N 1479: | 9-97-6<br>4-41-7           | 0.0001<br>0.01<br>0.01  | mg/L                   | <0.0001                                   | 0.01 mg/L                              | 92.8                        | 83.0        |                     |
| EG035F: Mercury 7433  EK055G: Ammonia as N by Discrete Analyser (QCLot: 5238030)  EK055G: Ammonia as N 7666  EK057G: Nitrite as N by Discrete Analyser (QCLot: 5237562)  EK057G: Nitrite as N 1479                                                                | 9-97-6<br>4-41-7<br>7-65-0 | 0.01<br>0.01            | mg/L                   |                                           |                                        |                             |             | 105                 |
| EK055G: Ammonia as N by Discrete Analyser (QCLot: 5238030) EK055G: Ammonia as N 7666 EK057G: Nitrite as N by Discrete Analyser (QCLot: 5237562) EK057G: Nitrite as N 1479                                                                                         | 4-41-7<br>7-65-0           | 0.01<br>0.01            | mg/L                   |                                           |                                        |                             |             | 105                 |
| EK055G: Ammonia as N 7666  EK057G: Nitrite as N by Discrete Analyser (QCLot: 5237562)  EK057G: Nitrite as N 1479                                                                                                                                                  | 7-65-0                     | 0.01                    |                        | <0.01                                     | 1 mg/L                                 | 102                         | 22.2        |                     |
| EK057G: Nitrite as N by Discrete Analyser (QCLot: 5237562) EK057G: Nitrite as N 1479                                                                                                                                                                              | 7-65-0                     | 0.01                    |                        | <0.01                                     | 1 mg/L                                 | 100                         | 00.0        |                     |
| EK057G: Nitrite as N 1479                                                                                                                                                                                                                                         |                            |                         | ma/l                   |                                           |                                        | 102                         | 90.0        | 114                 |
| 2. Too For Hallo do Fr                                                                                                                                                                                                                                            |                            |                         | ma/l                   |                                           |                                        |                             |             |                     |
| EKOEOO, Nikrita alaa Nikrata aa N (NOa) ka Diaanta Analaaan (O                                                                                                                                                                                                    | CLot: 523                  |                         | g/ L                   | <0.01                                     | 0.5 mg/L                               | 104                         | 82.0        | 114                 |
| EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analyser (Q0                                                                                                                                                                                                  |                            | 38031)                  |                        |                                           |                                        |                             |             |                     |
| EK059G: Nitrite + Nitrate as N                                                                                                                                                                                                                                    |                            | 0.01                    | mg/L                   | <0.01                                     | 0.5 mg/L                               | 103                         | 91.0        | 113                 |
| EK061G: Total Kjeldahl Nitrogen By Discrete Analyser (QCLot: 52                                                                                                                                                                                                   | 38027)                     |                         |                        |                                           |                                        |                             |             |                     |
| EK061G: Total Kjeldahl Nitrogen as N                                                                                                                                                                                                                              |                            | 0.1                     | mg/L                   | <0.1                                      | 10 mg/L                                | 89.1                        | 69.0        | 101                 |
|                                                                                                                                                                                                                                                                   |                            |                         |                        | <0.1                                      | 1 mg/L                                 | 89.2                        | 70.0        | 118                 |
|                                                                                                                                                                                                                                                                   |                            |                         |                        | <0.1                                      | 5 mg/L                                 | 91.0                        | 70.0        | 130                 |
| EK067G: Total Phosphorus as P by Discrete Analyser (QCLot: 52                                                                                                                                                                                                     | 38026)                     |                         |                        |                                           |                                        |                             |             |                     |
| EK067G: Total Phosphorus as P                                                                                                                                                                                                                                     |                            | 0.01                    | mg/L                   | <0.01                                     | 4.42 mg/L                              | 87.1                        | 71.3        | 126                 |
|                                                                                                                                                                                                                                                                   |                            |                         |                        | <0.01                                     | 0.442 mg/L                             | 87.0                        | 71.3        | 126                 |
|                                                                                                                                                                                                                                                                   |                            |                         |                        | <0.01                                     | 1 mg/L                                 | 97.4                        | 70.0        | 130                 |
| EP075(SIM)A: Phenolic Compounds (QCLot: 5235620)                                                                                                                                                                                                                  |                            |                         |                        |                                           |                                        |                             |             |                     |
|                                                                                                                                                                                                                                                                   | 3-95-2                     | 1                       | μg/L                   | <1.0                                      | 5 μg/L                                 | 33.4                        | 24.5        | 61.9                |
| EP075(SIM): 2-Chlorophenol                                                                                                                                                                                                                                        | 5-57-8                     | 1                       | μg/L                   | <1.0                                      | 5 μg/L                                 | 68.8                        | 52.0        | 90.0                |
| EP075(SIM): 2-Methylphenol                                                                                                                                                                                                                                        | 5-48-7                     | 1                       | μg/L                   | <1.0                                      | 5 μg/L                                 | 77.5                        | 51.0        | 91.0                |
| = ore(em)/ or a remainification                                                                                                                                                                                                                                   | 9-77-3                     | 2                       | μg/L                   | <2.0                                      | 10 μg/L                                | 63.5                        | 44.0        | 88.0                |
| EP075(SIM): 2-Nitrophenol                                                                                                                                                                                                                                         | 3-75-5                     | 1                       | μg/L                   | <1.0                                      | 5 μg/L                                 | 75.4                        | 48.0        | 100                 |
| EP075(SIM): 2.4-Dimethylphenol                                                                                                                                                                                                                                    | 5-67-9                     | 1                       | μg/L                   | <1.0                                      | 5 μg/L                                 | 71.7                        | 49.0        | 99.0                |
| EP075(SIM): 2.4-Dichlorophenol                                                                                                                                                                                                                                    | 0-83-2                     | 1                       | μg/L                   | <1.0                                      | 5 μg/L                                 | 68.2                        | 53.0        | 105                 |
| EP075(SIM): 2.6-Dichlorophenol                                                                                                                                                                                                                                    | 7-65-0                     | 1                       | μg/L                   | <1.0                                      | 5 μg/L                                 | 69.9                        | 57.0        | 105                 |
| EP075(SIM): 4-Chloro-3-methylphenol                                                                                                                                                                                                                               | 9-50-7                     | 1                       | μg/L                   | <1.0                                      | 5 μg/L                                 | 71.2                        | 53.0        | 99.0                |
| EP075(SIM): 2.4.6-Trichlorophenol                                                                                                                                                                                                                                 | 3-06-2                     | 1                       | μg/L                   | <1.0                                      | 5 μg/L                                 | 71.8                        | 50.0        | 106                 |
| EP075(SIM): 2.4.5-Trichlorophenol                                                                                                                                                                                                                                 | 5-95-4                     | 1                       | μg/L                   | <1.0                                      | 5 μg/L                                 | 76.0                        | 51.0        | 105                 |
| EP075(SIM): Pentachlorophenol 8                                                                                                                                                                                                                                   | 7-86-5                     | 2                       | μg/L                   | <2.0                                      | 10 μg/L                                | 33.4                        | 10.0        | 95.0                |
| EP075(SIM)A: Phenolic Compounds (QCLot: 5235874)                                                                                                                                                                                                                  |                            |                         |                        |                                           |                                        |                             |             |                     |
| EP075(SIM): Phenol                                                                                                                                                                                                                                                | 3-95-2                     | 1                       | μg/L                   | <1.0                                      | 5 μg/L                                 | 35.5                        | 24.5        | 61.9                |
| EP075(SIM): 2-Chlorophenol                                                                                                                                                                                                                                        | 5-57-8                     | 1                       | μg/L                   | <1.0                                      | 5 μg/L                                 | 72.2                        | 52.0        | 90.0                |
| EP075(SIM): 2-Methylphenol                                                                                                                                                                                                                                        | 5-48-7                     | 1                       | μg/L                   | <1.0                                      | 5 μg/L                                 | 66.5                        | 51.0        | 91.0                |
| EP075(SIM): 3- & 4-Methylphenol                                                                                                                                                                                                                                   | 9-77-3                     | 2                       | μg/L                   | <2.0                                      | 10 μg/L                                | 59.0                        | 44.0        | 88.0                |
| EP075(SIM): 2-Nitrophenol                                                                                                                                                                                                                                         | 3-75-5                     | 1                       | μg/L                   | <1.0                                      | 5 μg/L                                 | 66.8                        | 48.0        | 100                 |

Page : 7 of 11

Work Order : ES2327328 Amendment 2
Client : SENVERSA PTY LTD



| Sub-Matrix: WATER                                   |                      |     |      | Method Blank (MB) |               | Laboratory Control Spike (LC | S) Report  |            |
|-----------------------------------------------------|----------------------|-----|------|-------------------|---------------|------------------------------|------------|------------|
|                                                     |                      |     |      | Report            | Spike         | Spike Recovery (%)           | Acceptable | Limits (%) |
| Method: Compound                                    | CAS Number           | LOR | Unit | Result            | Concentration | LCS                          | Low        | High       |
| EP075(SIM)A: Phenolic Compounds (QCLot: 5235874) -  |                      |     |      |                   |               |                              |            |            |
| EP075(SIM): 2.4-Dimethylphenol                      | 105-67-9             | 1   | μg/L | <1.0              | 5 μg/L        | 72.6                         | 49.0       | 99.0       |
| EP075(SIM): 2.4-Dichlorophenol                      | 120-83-2             | 1   | μg/L | <1.0              | 5 μg/L        | 66.7                         | 53.0       | 105        |
| EP075(SIM): 2.6-Dichlorophenol                      | 87-65-0              | 1   | μg/L | <1.0              | 5 μg/L        | 73.2                         | 57.0       | 105        |
| EP075(SIM): 4-Chloro-3-methylphenol                 | 59-50-7              | 1   | μg/L | <1.0              | 5 μg/L        | 73.1                         | 53.0       | 99.0       |
| EP075(SIM): 2.4.6-Trichlorophenol                   | 88-06-2              | 1   | μg/L | <1.0              | 5 μg/L        | 67.1                         | 50.0       | 106        |
| EP075(SIM): 2.4.5-Trichlorophenol                   | 95-95-4              | 1   | μg/L | <1.0              | 5 μg/L        | 77.8                         | 51.0       | 105        |
| EP075(SIM): Pentachlorophenol                       | 87-86-5              | 2   | μg/L | <2.0              | 10 μg/L       | 35.7                         | 10.0       | 95.0       |
| EP075(SIM)B: Polynuclear Aromatic Hydrocarbons (QCL | ot: 5235620)         |     |      |                   |               |                              |            |            |
| EP075(SIM): Naphthalene                             | 91-20-3              | 1   | μg/L | <1.0              | 5 μg/L        | 66.7                         | 50.0       | 94.0       |
| EP075(SIM): Acenaphthylene                          | 208-96-8             | 1   | μg/L | <1.0              | 5 μg/L        | 72.0                         | 63.6       | 114        |
| EP075(SIM): Acenaphthene                            | 83-32-9              | 1   | μg/L | <1.0              | 5 μg/L        | 72.0                         | 62.2       | 113        |
| EP075(SIM): Fluorene                                | 86-73-7              | 1   | μg/L | <1.0              | 5 μg/L        | 73.8                         | 63.9       | 115        |
| EP075(SIM): Phenanthrene                            | 85-01-8              | 1   | μg/L | <1.0              | 5 μg/L        | 70.4                         | 62.6       | 116        |
| EP075(SIM): Anthracene                              | 120-12-7             | 1   | μg/L | <1.0              | 5 μg/L        | 93.1                         | 64.3       | 116        |
| EP075(SIM): Fluoranthene                            | 206-44-0             | 1   | μg/L | <1.0              | 5 μg/L        | 76.7                         | 63.6       | 118        |
| EP075(SIM): Pyrene                                  | 129-00-0             | 1   | μg/L | <1.0              | 5 μg/L        | 78.3                         | 63.1       | 118        |
| EP075(SIM): Benz(a)anthracene                       | 56-55-3              | 1   | μg/L | <1.0              | 5 μg/L        | 78.2                         | 64.1       | 117        |
| EP075(SIM): Chrysene                                | 218-01-9             | 1   | μg/L | <1.0              | 5 μg/L        | 77.0                         | 62.5       | 116        |
| EP075(SIM): Benzo(b+j)fluoranthene                  | 205-99-2<br>205-82-3 | 1   | μg/L | <1.0              | 5 μg/L        | 71.7                         | 61.7       | 119        |
| EP075(SIM): Benzo(k)fluoranthene                    | 207-08-9             | 1   | μg/L | <1.0              | 5 μg/L        | 85.5                         | 63.0       | 115        |
| EP075(SIM): Benzo(a)pyrene                          | 50-32-8              | 0.5 | μg/L | <0.5              | 5 μg/L        | 78.8                         | 63.3       | 117        |
| EP075(SIM): Indeno(1.2.3.cd)pyrene                  | 193-39-5             | 1   | μg/L | <1.0              | 5 μg/L        | 68.6                         | 59.9       | 118        |
| EP075(SIM): Dibenz(a.h)anthracene                   | 53-70-3              | 1   | μg/L | <1.0              | 5 μg/L        | 70.2                         | 61.2       | 117        |
| EP075(SIM): Benzo(g.h.i)perylene                    | 191-24-2             | 1   | μg/L | <1.0              | 5 μg/L        | 69.0                         | 59.1       | 118        |
| EP075(SIM)B: Polynuclear Aromatic Hydrocarbons (QCL | ot: 5235874)         |     |      |                   |               |                              |            |            |
| EP075(SIM): Naphthalene                             | 91-20-3              | 1   | μg/L | <1.0              | 5 μg/L        | 70.9                         | 50.0       | 94.0       |
| EP075(SIM): Acenaphthylene                          | 208-96-8             | 1   | μg/L | <1.0              | 5 μg/L        | 76.6                         | 63.6       | 114        |
| EP075(SIM): Acenaphthene                            | 83-32-9              | 1   | μg/L | <1.0              | 5 μg/L        | 80.4                         | 62.2       | 113        |
| EP075(SIM): Fluorene                                | 86-73-7              | 1   | μg/L | <1.0              | 5 μg/L        | 79.3                         | 63.9       | 115        |
| EP075(SIM): Phenanthrene                            | 85-01-8              | 1   | μg/L | <1.0              | 5 μg/L        | 75.7                         | 62.6       | 116        |
| EP075(SIM): Anthracene                              | 120-12-7             | 1   | μg/L | <1.0              | 5 μg/L        | 91.4                         | 64.3       | 116        |
| EP075(SIM): Fluoranthene                            | 206-44-0             | 1   | μg/L | <1.0              | 5 μg/L        | 81.0                         | 63.6       | 118        |
| EP075(SIM): Pyrene                                  | 129-00-0             | 1   | μg/L | <1.0              | 5 μg/L        | 83.4                         | 63.1       | 118        |

Page : 8 of 11

Work Order : ES2327328 Amendment 2
Client : SENVERSA PTY LTD



| Sub-Matrix: WATER                                      |                      |               | Method Blank (MB) | Laboratory Control Spike (LCS) Report |               |                    |            |              |  |
|--------------------------------------------------------|----------------------|---------------|-------------------|---------------------------------------|---------------|--------------------|------------|--------------|--|
|                                                        |                      |               |                   | Report                                | Spike         | Spike Recovery (%) | Acceptable | e Limits (%) |  |
| Method: Compound                                       | CAS Number           | LOR           | Unit              | Result                                | Concentration | LCS                | Low        | High         |  |
| P075(SIM)B: Polynuclear Aromatic Hydrocarbons (QCLot   |                      | ontinued      |                   |                                       |               |                    |            |              |  |
| P075(SIM): Benz(a)anthracene                           | 56-55-3              | 1             | μg/L              | <1.0                                  | 5 μg/L        | 73.5               | 64.1       | 117          |  |
| P075(SIM): Chrysene                                    | 218-01-9             | 1             | μg/L              | <1.0                                  | 5 μg/L        | 87.1               | 62.5       | 116          |  |
| P075(SIM): Benzo(b+j)fluoranthene                      | 205-99-2<br>205-82-3 | 1             | μg/L              | <1.0                                  | 5 μg/L        | 69.2               | 61.7       | 119          |  |
| P075(SIM): Benzo(k)fluoranthene                        | 207-08-9             | 1             | μg/L              | <1.0                                  | 5 μg/L        | 76.0               | 63.0       | 115          |  |
| P075(SIM): Benzo(a)pyrene                              | 50-32-8              | 0.5           | μg/L              | <0.5                                  | 5 μg/L        | 83.0               | 63.3       | 117          |  |
| P075(SIM): Indeno(1.2.3.cd)pyrene                      | 193-39-5             | 1             | μg/L              | <1.0                                  | 5 μg/L        | 68.6               | 59.9       | 118          |  |
| P075(SIM): Dibenz(a.h)anthracene                       | 53-70-3              | 1             | μg/L              | <1.0                                  | 5 μg/L        | 69.8               | 61.2       | 117          |  |
| P075(SIM): Benzo(g.h.i)perylene                        | 191-24-2             | 1             | μg/L              | <1.0                                  | 5 μg/L        | 71.0               | 59.1       | 118          |  |
| P080/071: Total Petroleum Hydrocarbons (QCLot: 523362  | 5)                   |               |                   |                                       |               |                    |            |              |  |
| P080: C6 - C9 Fraction                                 |                      | 20            | μg/L              | <20                                   | 260 μg/L      | 101                | 75.0       | 127          |  |
| P080/071: Total Petroleum Hydrocarbons (QCLot: 5235621 | l)                   |               |                   |                                       |               |                    |            |              |  |
| P071: C10 - C14 Fraction                               |                      | 50            | μg/L              | <50                                   | 400 μg/L      | 66.4               | 53.7       | 97.0         |  |
| P071: C15 - C28 Fraction                               |                      | 100           | μg/L              | <100                                  | 600 μg/L      | 80.9               | 63.3       | 107          |  |
| P071: C29 - C36 Fraction                               |                      | 50            | μg/L              | <50                                   | 400 μg/L      | 91.1               | 58.3       | 120          |  |
| P080/071: Total Petroleum Hydrocarbons (QCLot: 5235873 | 3)                   |               |                   |                                       |               |                    |            |              |  |
| P071: C10 - C14 Fraction                               |                      | 50            | μg/L              | <50                                   | 400 μg/L      | 83.4               | 53.7       | 97.0         |  |
| P071: C15 - C28 Fraction                               |                      | 100           | μg/L              | <100                                  | 600 μg/L      | 88.5               | 63.3       | 107          |  |
| P071: C29 - C36 Fraction                               |                      | 50            | μg/L              | <50                                   | 400 μg/L      | 79.5               | 58.3       | 120          |  |
| P080/071: Total Petroleum Hydrocarbons (QCLot: 5236018 | 3)                   |               |                   |                                       |               |                    |            |              |  |
| P080: C6 - C9 Fraction                                 |                      | 20            | μg/L              | <20                                   | 260 μg/L      | 93.9               | 75.0       | 127          |  |
| P080/071: Total Recoverable Hydrocarbons - NEPM 2013 F | ractions (QCI        | Lot: 5233625) |                   |                                       |               |                    |            |              |  |
| P080: C6 - C10 Fraction                                | C6_C10               | 20            | μg/L              | <20                                   | 310 μg/L      | 98.0               | 75.0       | 127          |  |
| P080/071: Total Recoverable Hydrocarbons - NEPM 2013 F | ractions (QCI        | Lot: 5235621) |                   |                                       |               |                    |            |              |  |
| P071: >C10 - C16 Fraction                              |                      | 100           | μg/L              | <100                                  | 500 μg/L      | 79.7               | 53.9       | 95.5         |  |
| P071: >C16 - C34 Fraction                              |                      | 100           | μg/L              | <100                                  | 700 μg/L      | 80.9               | 57.8       | 110          |  |
| P071: >C34 - C40 Fraction                              |                      | 100           | μg/L              | <100                                  | 300 μg/L      | 93.4               | 50.5       | 115          |  |
| P080/071: Total Recoverable Hydrocarbons - NEPM 2013 F | ractions (QCI        | <u> </u>      |                   |                                       |               |                    |            |              |  |
| P071: >C10 - C16 Fraction                              |                      | 100           | μg/L              | <100                                  | 500 μg/L      | 66.9               | 53.9       | 95.5         |  |
| P071: >C16 - C34 Fraction                              |                      | 100           | μg/L              | <100                                  | 700 μg/L      | 89.5               | 57.8       | 110          |  |
| P071: >C34 - C40 Fraction                              |                      | 100           | μg/L              | <100                                  | 300 μg/L      | 89.3               | 50.5       | 115          |  |
| P080/071: Total Recoverable Hydrocarbons - NEPM 2013 F | •                    | ,             | -                 |                                       |               |                    |            |              |  |
| P080: C6 - C10 Fraction                                | C6_C10               | 20            | μg/L              | <20                                   | 310 μg/L      | 99.5               | 75.0       | 127          |  |

Page : 9 of 11

Work Order : ES2327328 Amendment 2
Client : SENVERSA PTY LTD

Project : 20102 REDIRECT WETHERILL PARK



| Sub-Matrix: WATER                         |            |     |      | Method Blank (MB) | Laboratory Control Spike (LCS) Report |                    |            |            |  |  |  |
|-------------------------------------------|------------|-----|------|-------------------|---------------------------------------|--------------------|------------|------------|--|--|--|
|                                           |            |     |      | Report            | Spike                                 | Spike Recovery (%) | Acceptable | Limits (%) |  |  |  |
| Method: Compound                          | CAS Number | LOR | Unit | Result            | Concentration                         | LCS                | Low        | High       |  |  |  |
| EP080: BTEXN (QCLot: 5233625) - continued |            |     |      |                   |                                       |                    |            |            |  |  |  |
| EP080: Benzene                            | 71-43-2    | 1   | μg/L | <1                | 10 μg/L                               | 91.7               | 68.3       | 119        |  |  |  |
| EP080: Toluene                            | 108-88-3   | 2   | μg/L | <2                | 10 μg/L                               | 92.1               | 73.5       | 120        |  |  |  |
| EP080: Ethylbenzene                       | 100-41-4   | 2   | μg/L | <2                | 10 μg/L                               | 89.1               | 73.8       | 122        |  |  |  |
| EP080: meta- & para-Xylene                | 108-38-3   | 2   | μg/L | <2                | 10 μg/L                               | 99.7               | 73.0       | 122        |  |  |  |
|                                           | 106-42-3   |     |      |                   |                                       |                    |            |            |  |  |  |
| EP080: ortho-Xylene                       | 95-47-6    | 2   | μg/L | <2                | 10 μg/L                               | 102                | 76.4       | 123        |  |  |  |
| EP080: Naphthalene                        | 91-20-3    | 5   | μg/L | <5                | 10 μg/L                               | 84.2               | 75.5       | 124        |  |  |  |
| EP080: BTEXN (QCLot: 5236018)             |            |     |      |                   |                                       |                    |            |            |  |  |  |
| EP080: Benzene                            | 71-43-2    | 1   | μg/L | <1                | 10 μg/L                               | 99.0               | 68.3       | 119        |  |  |  |
| EP080: Toluene                            | 108-88-3   | 2   | μg/L | <2                | 10 μg/L                               | 95.6               | 73.5       | 120        |  |  |  |
| EP080: Ethylbenzene                       | 100-41-4   | 2   | μg/L | <2                | 10 μg/L                               | 100                | 73.8       | 122        |  |  |  |
| EP080: meta- & para-Xylene                | 108-38-3   | 2   | μg/L | <2                | 10 μg/L                               | 102                | 73.0       | 122        |  |  |  |
|                                           | 106-42-3   |     |      |                   |                                       |                    |            |            |  |  |  |
| EP080: ortho-Xylene                       | 95-47-6    | 2   | μg/L | <2                | 10 μg/L                               | 104                | 76.4       | 123        |  |  |  |
| EP080: Naphthalene                        | 91-20-3    | 5   | μg/L | <5                | 10 μg/L                               | 102                | 75.5       | 124        |  |  |  |

#### Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

| Sub-Matrix: WATER    |                                     |                     |            | Ma            | atrix Spike (MS) Report |            |            |
|----------------------|-------------------------------------|---------------------|------------|---------------|-------------------------|------------|------------|
|                      |                                     |                     |            | Spike         | SpikeRecovery(%)        | Acceptable | Limits (%) |
| Laboratory sample ID | Sample ID                           | Method: Compound    | CAS Number | Concentration | MS                      | Low        | High       |
| EG020F: Dissolved    | Metals by ICP-MS (QCLot: 5236663)   |                     |            |               |                         |            |            |
| ES2327041-002        | Anonymous                           | EG020A-F: Arsenic   | 7440-38-2  | 1 mg/L        | 106                     | 70.0       | 130        |
|                      |                                     | EG020A-F: Cadmium   | 7440-43-9  | 0.25 mg/L     | 98.2                    | 70.0       | 130        |
|                      |                                     | EG020A-F: Chromium  | 7440-47-3  | 1 mg/L        | 98.4                    | 70.0       | 130        |
|                      |                                     | EG020A-F: Copper    | 7440-50-8  | 1 mg/L        | 105                     | 70.0       | 130        |
|                      |                                     | EG020A-F: Lead      | 7439-92-1  | 1 mg/L        | 95.7                    | 70.0       | 130        |
|                      |                                     | EG020A-F: Manganese | 7439-96-5  | 1 mg/L        | 93.8                    | 70.0       | 130        |
|                      |                                     | EG020A-F: Nickel    | 7440-02-0  | 1 mg/L        | 97.4                    | 70.0       | 130        |
|                      |                                     | EG020A-F: Zinc      | 7440-66-6  | 1 mg/L        | 98.0                    | 70.0       | 130        |
| EG020F: Dissolved    | I Metals by ICP-MS (QCLot: 5236666) |                     |            |               |                         |            |            |
| ES2327328-005        | MW6                                 | EG020A-F: Arsenic   | 7440-38-2  | 1 mg/L        | 109                     | 70.0       | 130        |
|                      |                                     | EG020A-F: Cadmium   | 7440-43-9  | 0.25 mg/L     | 126                     | 70.0       | 130        |
|                      |                                     | EG020A-F: Chromium  | 7440-47-3  | 1 mg/L        | 118                     | 70.0       | 130        |
|                      |                                     | EG020A-F: Copper    | 7440-50-8  | 1 mg/L        | 108                     | 70.0       | 130        |

Page : 10 of 11

Work Order : ES2327328 Amendment 2
Client : SENVERSA PTY LTD



| Sub-Matrix: WATER    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                      |            | M                | atrix Spike (MS) Report | 1          |            |
|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|------------|------------------|-------------------------|------------|------------|
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                      |            | Spike            | SpikeRecovery(%)        | Acceptable | Limits (%) |
| Laboratory sample ID | Sample ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Method: Compound                     | CAS Number | Concentration    | MS                      | Low        | High       |
| EG020F: Dissolved    | Metals by ICP-MS (QCLot: 5236666) - continued                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                      |            |                  |                         |            |            |
| ES2327328-005        | MW6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | EG020A-F: Lead                       | 7439-92-1  | 1 mg/L           | 115                     | 70.0       | 130        |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | EG020A-F: Manganese                  | 7439-96-5  | 1 mg/L           | 125                     | 70.0       | 130        |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | EG020A-F: Nickel                     | 7440-02-0  | 1 mg/L           | 129                     | 70.0       | 130        |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | EG020A-F: Zinc                       | 7440-66-6  | 1 mg/L           | 103                     | 70.0       | 130        |
| EG035F: Dissolved    | Mercury by FIMS (QCLot: 5236665)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                      |            |                  |                         |            |            |
| ES2327080-001        | Anonymous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | EG035F: Mercury                      | 7439-97-6  | 0.01 mg/L        | 89.1                    | 70.0       | 130        |
| EK055G: Ammonia      | as N by Discrete Analyser (QCLot: 5238030)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                      |            |                  |                         |            |            |
| ES2327281-001        | Anonymous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | EK055G: Ammonia as N                 | 7664-41-7  | 1 mg/L           | 119                     | 70.0       | 130        |
| EK057G: Nitrite as   | N by Discrete Analyser (QCLot: 5237562)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                      |            |                  |                         |            |            |
| ES2327281-001        | Anonymous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | EK057G: Nitrite as N                 | 14797-65-0 | 0.5 mg/L         | 112                     | 70.0       | 130        |
| EK059G: Nitrite pl   | us Nitrate as N (NOx) by Discrete Analyser (QCLot: 52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                      |            | , and the second |                         |            |            |
| ES2327281-001        | Anonymous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | EK059G: Nitrite + Nitrate as N       |            | 0.5 mg/L         | 110                     | 70.0       | 130        |
|                      | dahl Nitrogen By Discrete Analyser (QCLot: 5238027)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | EN0090. Withte : Withate as W        |            | 0.0 mg/2         |                         |            | .00        |
| ES2327281-002        | Anonymous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | FK0040 TatalKialdahl Nitranan an N   |            | 5 mg/l           | 88.5                    | 70.0       | 130        |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | EK061G: Total Kjeldahl Nitrogen as N |            | 5 mg/L           | 66.5                    | 70.0       | 130        |
|                      | sphorus as P by Discrete Analyser (QCLot: 5238026)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                      |            |                  |                         |            | 100        |
| ES2327281-002        | Anonymous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | EK067G: Total Phosphorus as P        |            | 1 mg/L           | 92.5                    | 70.0       | 130        |
|                      | etroleum Hydrocarbons (QCLot: 5233625)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                      |            |                  |                         |            |            |
| ES2327291-001        | Anonymous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | EP080: C6 - C9 Fraction              |            | 325 μg/L         | 127                     | 70.0       | 130        |
| EP080/071: Total P   | etroleum Hydrocarbons (QCLot: 5236018)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                      |            |                  |                         |            |            |
| ES2327093-001        | Anonymous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | EP080: C6 - C9 Fraction              |            | 325 μg/L         | 88.8                    | 70.0       | 130        |
| EP080/071: Total R   | ecoverable Hydrocarbons - NEPM 2013 Fractions (QCI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | _ot: 5233625)                        |            |                  |                         |            |            |
| ES2327291-001        | Anonymous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | EP080: C6 - C10 Fraction             | C6_C10     | 375 μg/L         | 128                     | 70.0       | 130        |
| EP080/071: Total R   | ecoverable Hydrocarbons - NEPM 2013 Fractions (QCI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | _ot: 5236018)                        |            |                  |                         |            |            |
| ES2327093-001        | Anonymous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | EP080: C6 - C10 Fraction             | C6_C10     | 375 μg/L         | 90.7                    | 70.0       | 130        |
| EP080: BTEXN (Q      | CLot: 5233625)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |            |                  |                         |            |            |
| ES2327291-001        | Anonymous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | EP080: Benzene                       | 71-43-2    | 25 μg/L          | 106                     | 70.0       | 130        |
|                      | , and the same of | EP080: Toluene                       | 108-88-3   | 25 μg/L          | 112                     | 70.0       | 130        |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | EP080: Ethylbenzene                  | 100-41-4   | 25 μg/L          | 123                     | 70.0       | 130        |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | EP080: meta- & para-Xylene           | 108-38-3   | 25 μg/L          | 128                     | 70.0       | 130        |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                      | 106-42-3   |                  |                         |            |            |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | EP080: ortho-Xylene                  | 95-47-6    | 25 μg/L          | 126                     | 70.0       | 130        |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | EP080: Naphthalene                   | 91-20-3    | 25 μg/L          | 94.9                    | 70.0       | 130        |
| EP080: BTEXN (Q      | CLot: 5236018)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |            |                  |                         |            |            |
| ES2327093-001        | Anonymous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | EP080: Benzene                       | 71-43-2    | 25 μg/L          | 95.5                    | 70.0       | 130        |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | EP080: Toluene                       | 108-88-3   | 25 μg/L          | 91.4                    | 70.0       | 130        |

Page : 11 of 11

Work Order : ES2327328 Amendment 2
Client : SENVERSA PTY LTD



| Sub-Matrix: WATER                         | Sub-Matrix: WATER |                            |            |               | Matrix Spike (MS) Report |              |            |  |  |  |  |  |
|-------------------------------------------|-------------------|----------------------------|------------|---------------|--------------------------|--------------|------------|--|--|--|--|--|
|                                           |                   |                            |            | Spike         | SpikeRecovery(%)         | Acceptable l | Limits (%) |  |  |  |  |  |
| Laboratory sample ID                      | Sample ID         | Method: Compound           | CAS Number | Concentration | MS                       | Low          | High       |  |  |  |  |  |
| EP080: BTEXN (QCLot: 5236018) - continued |                   |                            |            |               |                          |              |            |  |  |  |  |  |
| ES2327093-001                             | Anonymous         | EP080: Ethylbenzene        | 100-41-4   | 25 μg/L       | 100.0                    | 70.0         | 130        |  |  |  |  |  |
|                                           |                   | EP080: meta- & para-Xylene | 108-38-3   | 25 μg/L       | 101                      | 70.0         | 130        |  |  |  |  |  |
|                                           |                   |                            | 106-42-3   |               |                          |              |            |  |  |  |  |  |
|                                           |                   | EP080: ortho-Xylene        | 95-47-6    | 25 μg/L       | 102                      | 70.0         | 130        |  |  |  |  |  |
|                                           |                   | EP080: Naphthalene         | 91-20-3    | 25 μg/L       | 86.1                     | 70.0         | 130        |  |  |  |  |  |

, ev rsa

#### **Chain of Custody Documentation**

| Senversa I              | -                                                                                                       |                                        |                                         | Laboratory:                    | •                                                                                                    |                     |                  | Analysis Required            |                                          |                                       |                   |              |              |                                                  |   |    |           |                                                                                         |
|-------------------------|---------------------------------------------------------------------------------------------------------|----------------------------------------|-----------------------------------------|--------------------------------|------------------------------------------------------------------------------------------------------|---------------------|------------------|------------------------------|------------------------------------------|---------------------------------------|-------------------|--------------|--------------|--------------------------------------------------|---|----|-----------|-----------------------------------------------------------------------------------------|
| WWW.500V6<br>ABN 89 13. |                                                                                                         |                                        |                                         | Address:<br>Contact:<br>Phone: | Sample Receipt                                                                                       |                     |                  |                              | ,,                                       |                                       |                   |              |              |                                                  |   |    |           | Comments: e.g. Highly contaminated sample; hazardous materials present; trace LORs etc. |
| Job Numb                | er;                                                                                                     | S2                                     | 20102                                   | Purchase Order.                |                                                                                                      |                     | 7                | TALS                         | TALS                                     | S                                     |                   |              |              |                                                  |   |    |           | Environmental Divisi                                                                    |
| Project Na:             | ne:                                                                                                     | Wetherill                              | Park WME                                | Quate No:                      | EN/103/21                                                                                            |                     | 1                | 9 ME                         | M M                                      | NS.                                   |                   |              | 1            | ·                                                |   | 1  | i         | Sydney                                                                                  |
| Sampled B               | y:                                                                                                      | Bec (                                  | Chapple                                 | Turn Around Time:              | Standard 7 [                                                                                         | Days                | ] =              | PAH/                         | AH.                                      | ANIC                                  |                   | İ            |              | Ŝ                                                |   |    |           | Sydney Work Order Reference                                                             |
| Project Ma              | nager:                                                                                                  | Emm                                    | a Walsh                                 | Page:                          | 1                                                                                                    | of 1 .              | 1 &              | X                            | \bar{2}{2}                               | S                                     | ~                 | _            | _            | AND MN)                                          | İ |    |           | ES230401                                                                                |
| Email Repo              | ert To:                                                                                                 |                                        | senversa.com.au.<br>Isenversa.com.au    | Phone/Mobile:                  | 0408038593, 040                                                                                      | 4011544             | N∴18 (TRH/BTEXN) | N-26 (TRH/BTEX/PAH/8 METALS) | W-27 (TRH/BTEX/PAH/8 METALS/<br>PHENOLS) | NT-14 (CATIONS, ANIONS AND NUTRIENTS) | NT-11 (TN, TP)    | EA015H (TDS) | EA025H (TSS) | 벁                                                |   |    | İ         |                                                                                         |
|                         |                                                                                                         | Sample Information                     | on                                      |                                | Container Infor                                                                                      | mation              | ] 💆              | ) 9Z                         |                                          | 44                                    | <u> </u>          | 151          | 1251         | EG005F                                           |   |    | 9         |                                                                                         |
| Lab ID                  | Sample ID                                                                                               | Matrix *                               | Date                                    | Time                           | Type / Code                                                                                          | Total Bottles       | ≱                | <u>```</u>                   | ≱ E                                      | ΈŻ                                    | Ρ̈́               | EA           | EA(          | Ü                                                |   | i  | HOLD      |                                                                                         |
| 1                       | QC401                                                                                                   | w                                      | 8/02/2023                               | AM                             | VOA                                                                                                  | 1                   | х                |                              |                                          |                                       |                   |              |              |                                                  |   |    |           |                                                                                         |
| 2                       | QC501                                                                                                   | w                                      | 8/02/2023                               | AM                             | VOA                                                                                                  | 1                   | х                |                              |                                          |                                       |                   |              |              |                                                  |   |    |           | <b>一直に乗りたがいこうかりで置</b> す                                                                 |
| _3                      | QC301                                                                                                   | w                                      | 8/02/2023                               | AM                             | VS x2, N, UA, VSA                                                                                    | 5                   |                  | х                            |                                          |                                       | x                 |              | -            | ×                                                |   |    |           | Telephone: + 61-2-8784 8555                                                             |
| ۲                       | MW1                                                                                                     | W                                      | 8/02/2023                               | AM                             | P; VS x2, N. UA. VSA                                                                                 | 6                   |                  |                              | x                                        | х                                     | $\bot$            |              |              | x                                                |   |    |           | 1                                                                                       |
| <                       | MW2                                                                                                     | w                                      | B/02/2023                               | AM                             | P, VS x2. N. UA, VSA                                                                                 | I 6                 |                  |                              | х                                        | х                                     |                   |              |              | х                                                |   |    |           |                                                                                         |
| 6                       | MW3                                                                                                     | W                                      | 8/02/2023                               | AM                             | P, VS x2, N, UA, VSA                                                                                 | 6                   |                  |                              | х                                        | х                                     |                   |              |              | ×                                                | * |    |           |                                                                                         |
| プ                       | MW4                                                                                                     | w                                      | 8/02/2023                               | AM                             | P. VS x2, N, UA, VSA                                                                                 | , 6                 |                  |                              | X.                                       | x                                     |                   |              |              | x                                                |   | Ţ  |           |                                                                                         |
| 8                       | MW6                                                                                                     | w                                      | 8/02/2023                               | АМ                             | P. VS x2, N, UA, VSA                                                                                 | 6.                  |                  |                              | х                                        | x                                     |                   |              |              | х                                                |   |    |           |                                                                                         |
| 4                       | QC101                                                                                                   | w                                      | 8/02/2023                               | АМ                             | VS x2, N, UA, VSA                                                                                    | 5.                  |                  | x                            |                                          |                                       | х                 |              |              | х                                                |   |    |           |                                                                                         |
| X                       | QC201                                                                                                   | W                                      | 8/02/2023                               | AM                             | VS x2, N, UA, VSA                                                                                    | 5                   |                  |                              |                                          | Envir                                 | olab Se           | rvices       |              |                                                  |   |    |           | Please forward to Envirolab                                                             |
|                         |                                                                                                         |                                        |                                         |                                |                                                                                                      |                     | 61               | VIRO                         | HB.                                      |                                       | 12 Asi            | vey St       |              | İ                                                |   |    |           |                                                                                         |
|                         |                                                                                                         |                                        | L                                       |                                |                                                                                                      | 1 ,                 | _                |                              | 7                                        | hatswo                                | od NSi<br>n2) 991 | o 6200       |              |                                                  |   |    |           |                                                                                         |
|                         |                                                                                                         |                                        |                                         |                                |                                                                                                      | ,                   |                  | ah No                        | 7                                        | 11 11                                 | <u>-</u> 0        |              |              |                                                  |   |    |           |                                                                                         |
|                         | Cubaan                                                                                                  | Convert Jak                            | / Split WO                              |                                |                                                                                                      | ,                   | -                |                              | 7                                        | 186                                   | ,                 | ,            |              |                                                  |   |    |           | i ii idana                                                                              |
|                         | -3400011                                                                                                | +                                      | / \ / \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | 1211                           | WRUAB                                                                                                |                     |                  | ate Re                       | ceive                                    | : QV                                  | 10 2              | 12           | <del>)</del> |                                                  |   |    |           |                                                                                         |
|                         | Lab / At                                                                                                | ialysis:                               |                                         |                                |                                                                                                      |                     | ī                | me R                         | ceive                                    | 1_(0                                  | 60                |              |              |                                                  |   |    |           |                                                                                         |
|                         | Organis                                                                                                 | ed By / Date:                          |                                         |                                | -                                                                                                    |                     | F                | eceive                       | d By:                                    | U T                                   |                   | -            |              |                                                  |   |    |           | <del>1</del> <del>1</del> <del>1</del> <del>1</del>                                     |
|                         | Relinau                                                                                                 | ished By / Dat                         | o:                                      |                                |                                                                                                      |                     | -                | emp(                         |                                          | nbien                                 |                   | $\neg$       |              |                                                  |   |    | _         |                                                                                         |
| Total                   |                                                                                                         | in in                                  |                                         |                                |                                                                                                      | 47 -                | <del>  </del>    | COLLE                        | rice                                     | epack                                 | ep/No             | ne)          |              |                                                  |   |    |           |                                                                                         |
| Sampler: I a            | ttest that proper field sampli<br>ns were used during the con                                           | ng procedures in a                     | cco/dance with Se                       | nversa standard proce          | dures and/or project                                                                                 | Sampler Name:       |                  | Bec C                        | happle                                   |                                       | Signati           |              | 11           | AL.                                              |   |    | Date:     | 8/02/2023                                                                               |
| Relinquishe             |                                                                                                         | d By PO / Inte                         | 1 61                                    |                                | Method of Shipment (if app                                                                           | liantitate.         |                  |                              | In                                       | 1 5                                   |                   | 2            | TAPE.        | W -                                              |   |    |           |                                                                                         |
| Name/Signa              |                                                                                                         | Bec Chapple                            | Propi                                   | Date: 8/2/23                   | Carrier / Reference #:                                                                               | incable):           | _                |                              | Receiv                                   | e <b>u by:</b><br>Signature           | s+'               | 7-81         |              | 1/2                                              |   |    |           | Date: \$12123                                                                           |
| Of:                     |                                                                                                         |                                        |                                         | Time: 12:00 PM                 | Date/Time:                                                                                           | •                   | -                |                              | Of;                                      | Jigi iaiture                          | 7.                | 100          | <u>/-</u>    | 17                                               |   |    |           | Time: 12-29_                                                                            |
| Name/Signa              | ure:                                                                                                    |                                        |                                         | Date:                          | Carrier / Reference #:                                                                               |                     |                  |                              | Name/S                                   | Signature                             | · Cl              | 1/-1/        | 71           | <del>/                                    </del> | 1 | 1_ |           | Date: 09 (02/7.3                                                                        |
| Of:                     |                                                                                                         |                                        |                                         | Time:                          | Date/Time:                                                                                           |                     |                  |                              | Of:                                      |                                       | $-\sim$           | 57           | 6            |                                                  |   |    |           | Time: (600)                                                                             |
| Name/Signal             | ure:                                                                                                    |                                        |                                         | Date:                          | Carrier / Reference #:                                                                               |                     |                  |                              | Name/S                                   | Signature                             | 2                 |              |              |                                                  |   |    |           | Date:                                                                                   |
| Of:                     | Vater Container Codes: 0 - Un                                                                           | entreeprod Displier N -                | - Mileie Auta (1980 ) 2                 | Time:                          | Date/Time:                                                                                           |                     |                  | (O. ). c                     | Of:                                      |                                       |                   |              |              |                                                  |   |    |           | Time:                                                                                   |
| ١                       | Vater Container Codes: P = Uni<br>V = VOA Vial Hydochloric Acid (HC<br>V = Formaldehyde Preserved Glass | <ol> <li>Preserved: VS = VC</li> </ol> | DA Viat Sulphuric Press                 | erved: VSA = Sulphuric Pre     | nc Preserved ORC; SH = Sodium<br>served Amber Glass: H = HCl Pr<br>= Sterile Bottle: UA = Unpreserve | eserved Plastic: HS | = HCJ Pr         | eserved S                    | ineciation                               | Rotile:                               | SP = Sulo         | huric Pres   | enved Pi     | actic:                                           |   |    | te presei | ved plastic;                                                                            |

#### Simon Song

From:

Emma Walsh < Emma. Walsh@senversa.com.au>

Sent:

Wednesday, 15 February 2023 9:55 AM

To:

Simon Song

Cc:

Bec Chapple

Subject:

RE: Sample Receipt for 316159 S20102, Wetherill Park WME

CAUTION: This email originated from outside of the organisation. Do not act on instructions, click links or open attachments unless you recognise the sender and know the content is authentic and safe.

Hi 5imon,

Sorry for the delay in getting back to you - can you pleased analyse sample QC201 for the following:

- TRH/BTEXN/PAH/8 metals (As, Cd, Cr, Cu, Hg, Ni and Zn)
- Total N, total P
- Additional metals iron and manganese

APPENDING MEMBERS OF A MARKET SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION OF THE SELECTION

10.00

Thanks.

Kind regards,

senversa

Emma Walsh

Senior Associate Environmental Scientist

M: +61 404 011 544 www.senversa.com.au

Level 24, 1 Market St, Djubuguli, Eora Country Sydney, NSW, 2000, Australia etnerill Pa. 4N:

tructions, c. Make o. . .

OCLOS for the follow

From: Simon Song <SSong@envirolab.com.au>

Sent: Friday, 10 February 2023 1:16 PM

To: Bec Chapple <bec.chapple@senversa.com.au>; Emma Walsh <Emma.Walsh@senversa.com.au>

Subject: Sample Receipt for 316159 S20102, Wetherill Park WME

Please refer to attached for:

a copy of the COC/paperwork received from you

a copy of our Sample Receipt Advice (SRA)

Please open and read the SRA as it contains important information.

Please let the lab know immediately if there are any issues.

echemi Pa AV

Results will be available by 6.30pm on the date indicated.

PLEASE NOTE COMBO PRICES WILL ONLY APPLY IF COMBOS ARE SELECTED ON COCKER OF THE PLANT OF THE PLANT OF THE PLANT OF THE PLANT OF THE PLANT OF THE PLANT OF THE PLANT OF THE PLANT OF THE PLANT OF THE PLANT OF THE PLANT OF THE PLANT OF THE PLANT OF THE PLANT OF THE PLANT OF THE PLANT OF THE PLANT OF THE PLANT OF THE PLANT OF THE PLANT OF THE PLANT OF THE PLANT OF THE PLANT OF THE PLANT OF THE PLANT OF THE PLANT OF THE PLANT OF THE PLANT OF THE PLANT OF THE PLANT OF THE PLANT OF THE PLANT OF THE PLANT OF THE PLANT OF THE PLANT OF THE PLANT OF THE PLANT OF THE PLANT OF THE PLANT OF THE PLANT OF THE PLANT OF THE PLANT OF THE PLANT OF THE PLANT OF THE PLANT OF THE PLANT OF THE PLANT OF THE PLANT OF THE PLANT OF THE PLANT OF THE PLANT OF THE PLANT OF THE PLANT OF THE PLANT OF THE PLANT OF THE PLANT OF THE PLANT OF THE PLANT OF THE PLANT OF THE PLANT OF THE PLANT OF THE PLANT OF THE PLANT OF THE PLANT OF THE PLANT OF THE PLANT OF THE PLANT OF THE PLANT OF THE PLANT OF THE PLANT OF THE PLANT OF THE PLANT OF THE PLANT OF THE PLANT OF THE PLANT OF THE PLANT OF THE PLANT OF THE PLANT OF THE PLANT OF THE PLANT OF THE PLANT OF THE PLANT OF THE PLANT OF THE PLANT OF THE PLANT OF THE PLANT OF THE PLANT OF THE PLANT OF THE PLANT OF THE PLANT OF THE PLANT OF THE PLANT OF THE PLANT OF THE PLANT OF THE PLANT OF THE PLANT OF THE PLANT OF THE PLANT OF THE PLANT OF THE PLANT OF THE PLANT OF THE PLANT OF THE PLANT OF THE PLANT OF THE PLANT OF THE PLANT OF THE PLANT OF THE PLANT OF THE PLANT OF THE PLANT OF THE PLANT OF THE PLANT OF THE PLANT OF THE PLANT OF THE PLANT OF THE PLANT OF THE PLANT OF THE PLANT OF THE PLANT OF THE PLANT OF THE PLANT OF THE PLANT OF THE PLANT OF THE PLANT OF THE PLANT OF THE PLANT OF THE PLANT OF THE PLANT OF THE PLANT OF THE PLANT OF THE PLANT OF THE PLANT OF THE PLANT OF THE PLANT OF THE PLANT OF THE PLANT OF THE PLANT OF THE PLANT OF THE PLANT OF THE PLANT OF THE PLANT OF THE PLANT OF THE PLANT OF THE PLANT OF THE PLANT OF THE PLANT OF THE PLANT OF THE PLANT OF THE PLANT OF THE PLANT OF THE PLANT OF THE PL

We have a new reporting format and would welcome your feedback. Sydney@envirolab.com.au

Please note that subcontracted testing or non routine testing may take significantly longer than just the standard 5 day TAT, contact the lab to get an approximate due date.

Enquiries should be made directly to: <a href="mailto:customerservice@envirolab.com.au">customerservice@envirolab.com.au</a>

OCCUPATION IN PROPERTY

Regards

Envirolab Services
12 Ashley St Chatswood NSW 2067
ph 02 9910 6200 fax 02 9910 6201
customerservice@envirolab.com.au
www.envirolab.com.au

TO FEBRUARY LOSS.

4. . .

Mari Par A

in Emiles in the in-



Envirolab Services Pty Ltd
ABN 37 112 535 645
12 Ashley St Chatswood NSW 2067
ph 02 9910 6200 fax 02 9910 6201
customerservice@envirolab.com.au
www.envirolab.com.au

#### **SAMPLE RECEIPT ADVICE**

| Client Details |                         |
|----------------|-------------------------|
| Client         | Senversa Pty Ltd        |
| Attention      | Bec Chapple, Emma Walsh |

| Sample Login Details                 |                            |
|--------------------------------------|----------------------------|
| Your reference                       | S20102, Wetherill Park WME |
| Envirolab Reference                  | 316159                     |
| Date Sample Received                 | 09/02/2023                 |
| Date Instructions Received           | 15/02/2023                 |
| Date Results Expected to be Reported | 22/02/2023                 |

| Sample Condition                                       |          |
|--------------------------------------------------------|----------|
| Samples received in appropriate condition for analysis | Yes      |
| No. of Samples Provided                                | 1 Water  |
| Turnaround Time Requested                              | Standard |
| Temperature on Receipt (°C)                            | 3        |
| Cooling Method                                         | Ice      |
| Sampling Date Provided                                 | YES      |

| Comments                                   |  |
|--------------------------------------------|--|
| last day of holding time for organics 15/2 |  |

#### Please direct any queries to:

| Aileen Hie                   | Jacinta Hurst                  |  |  |  |  |  |  |  |
|------------------------------|--------------------------------|--|--|--|--|--|--|--|
| Phone: 02 9910 6200          | Phone: 02 9910 6200            |  |  |  |  |  |  |  |
| Fax: 02 9910 6201            | Fax: 02 9910 6201              |  |  |  |  |  |  |  |
| Email: ahie@envirolab.com.au | Email: jhurst@envirolab.com.au |  |  |  |  |  |  |  |

Analysis Underway, details on the following page:



Envirolab Services Pty Ltd
ABN 37 112 535 645
12 Ashley St Chatswood NSW 2067
ph 02 9910 6200 fax 02 9910 6201
customerservice@envirolab.com.au
www.envirolab.com.au

| Sample ID | vTRH(C6-C10)/BTEXN in Water | svTRH (C10-C40) in Water | PAHsin Water | HM in water - dissolved | Total Nitrogen in water | Metals in Waters -Total |
|-----------|-----------------------------|--------------------------|--------------|-------------------------|-------------------------|-------------------------|
| QC201     | ✓                           | ✓                        | ✓            | ✓                       | ✓                       | ✓                       |

The '\sqrt{'} indicates the testing you have requested. **THIS IS NOT A REPORT OF THE RESULTS.** 

#### **Additional Info**

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

TAT for Micro is dependent on incubation. This varies from 3 to 6 days.



Envirolab Services Pty Ltd

ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

#### **CERTIFICATE OF ANALYSIS 316159**

| Client Details |                                       |
|----------------|---------------------------------------|
| Client         | Senversa Pty Ltd                      |
| Attention      | Bec Chapple, Emma Walsh               |
| Address        | 6/15 William St, Melbourne, VIC, 3000 |

| Sample Details                       |                            |
|--------------------------------------|----------------------------|
| Your Reference                       | S20102, Wetherill Park WME |
| Number of Samples                    | 1 Water                    |
| Date samples received                | 09/02/2023                 |
| Date completed instructions received | 15/02/2023                 |

#### **Analysis Details**

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

| Report Details                      |                                                                   |
|-------------------------------------|-------------------------------------------------------------------|
| Date results requested by           | 22/02/2023                                                        |
| Date of Issue                       | 22/02/2023                                                        |
| NATA Accreditation Number 2901.     | This document shall not be reproduced except in full.             |
| Accredited for compliance with ISO/ | IEC 17025 - Testing. Tests not covered by NATA are denoted with * |

**Results Approved By** 

Diego Bigolin, Inorganics Supervisor Hannah Nguyen, Metals Supervisor Josh Williams, Organics Supervisor Kyle Gavrily, Senior Chemist **Authorised By** 

Nancy Zhang, Laboratory Manager



| vTRH(C6-C10)/BTEXN in Water                         |       |            |
|-----------------------------------------------------|-------|------------|
| Our Reference                                       |       | 316159-1   |
| Your Reference                                      | UNITS | QC201      |
| Date Sampled                                        |       | 8/02/2023  |
| Type of sample                                      |       | Water      |
| Date extracted                                      | -     | 21/02/2023 |
| Date analysed                                       | -     | 21/02/2023 |
| TRH C <sub>6</sub> - C <sub>9</sub>                 | μg/L  | <10        |
| TRH C <sub>6</sub> - C <sub>10</sub>                | μg/L  | <10        |
| TRH C <sub>6</sub> - C <sub>10</sub> less BTEX (F1) | μg/L  | <10        |
| Benzene                                             | μg/L  | <1         |
| Toluene                                             | μg/L  | <1         |
| Ethylbenzene                                        | μg/L  | <1         |
| m+p-xylene                                          | μg/L  | <2         |
| o-xylene                                            | μg/L  | <1         |
| Naphthalene                                         | μg/L  | <1         |
| Surrogate Dibromofluoromethane                      | %     | 113        |
| Surrogate toluene-d8                                | %     | 103        |
| Surrogate 4-BFB                                     | %     | 104        |

| svTRH (C10-C40) in Water                                     |       |            |
|--------------------------------------------------------------|-------|------------|
| Our Reference                                                |       | 316159-1   |
| Your Reference                                               | UNITS | QC201      |
| Date Sampled                                                 |       | 8/02/2023  |
| Type of sample                                               |       | Water      |
| Date extracted                                               | -     | 16/02/2023 |
| Date analysed                                                | -     | 16/02/2023 |
| TRH C <sub>10</sub> - C <sub>14</sub>                        | μg/L  | <50        |
| TRH C <sub>15</sub> - C <sub>28</sub>                        | μg/L  | 140        |
| TRH C <sub>29</sub> - C <sub>36</sub>                        | μg/L  | <100       |
| Total +ve TRH (C10-C36)                                      | μg/L  | 140        |
| TRH >C10 - C16                                               | μg/L  | 130        |
| TRH >C <sub>10</sub> - C <sub>16</sub> less Naphthalene (F2) | μg/L  | 130        |
| TRH >C <sub>16</sub> - C <sub>34</sub>                       | μg/L  | <100       |
| TRH >C <sub>34</sub> - C <sub>40</sub>                       | μg/L  | <100       |
| Total +ve TRH (>C10-C40)                                     | μg/L  | 130        |
| Surrogate o-Terphenyl                                        | %     | 67         |

| PAHs in Water             |       |            |
|---------------------------|-------|------------|
| Our Reference             |       | 316159-1   |
| Your Reference            | UNITS | QC201      |
| Date Sampled              |       | 8/02/2023  |
| Type of sample            |       | Water      |
| Date extracted            | -     | 16/02/2023 |
| Date analysed             | -     | 20/02/2023 |
| Naphthalene               | μg/L  | <2         |
| Acenaphthylene            | μg/L  | <1         |
| Acenaphthene              | μg/L  | <1         |
| Fluorene                  | μg/L  | <1         |
| Phenanthrene              | μg/L  | <1         |
| Anthracene                | μg/L  | <1         |
| Fluoranthene              | μg/L  | <1         |
| Pyrene                    | μg/L  | <1         |
| Benzo(a)anthracene        | μg/L  | <1         |
| Chrysene                  | μg/L  | <1         |
| Benzo(b,j+k)fluoranthene  | μg/L  | <2         |
| Benzo(a)pyrene            | μg/L  | <1         |
| Indeno(1,2,3-c,d)pyrene   | μg/L  | <1         |
| Dibenzo(a,h)anthracene    | μg/L  | <1         |
| Benzo(g,h,i)perylene      | μg/L  | <1         |
| Benzo(a)pyrene TEQ        | μg/L  | <5         |
| Total +ve PAH's           | μg/L  | NIL (+)VE  |
| Surrogate p-Terphenyl-d14 | %     | 74         |

Envirolab Reference: 316159

Revision No: R00

| HM in water - dissolved |       |            |
|-------------------------|-------|------------|
| Our Reference           |       | 316159-1   |
| Your Reference          | UNITS | QC201      |
| Date Sampled            |       | 8/02/2023  |
| Type of sample          |       | Water      |
| Date prepared           | -     | 17/02/2023 |
| Date analysed           | -     | 20/02/2023 |
| Arsenic-Dissolved       | μg/L  | 4          |
| Cadmium-Dissolved       | μg/L  | 0.1        |
| Chromium-Dissolved      | μg/L  | 2          |
| Copper-Dissolved        | μg/L  | <1         |
| Lead-Dissolved          | μg/L  | 1          |
| Mercury-Dissolved       | μg/L  | <0.05      |
| Nickel-Dissolved        | μg/L  | 180        |
| Zinc-Dissolved          | μg/L  | 230        |
| Iron-Dissolved          | μg/L  | 5,700      |
| Manganese-Dissolved     | μg/L  | 5,800      |

| Miscellaneous Inorganics |       |            |
|--------------------------|-------|------------|
| Our Reference            |       | 316159-1   |
| Your Reference           | UNITS | QC201      |
| Date Sampled             |       | 8/02/2023  |
| Type of sample           |       | Water      |
| Date prepared            | -     | 16/02/2023 |
| Date analysed            | -     | 16/02/2023 |
| Total Nitrogen in water  | mg/L  | 0.5        |

| Metals in Waters - Total |       |            |
|--------------------------|-------|------------|
| Our Reference            |       | 316159-1   |
| Your Reference           | UNITS | QC201      |
| Date Sampled             |       | 8/02/2023  |
| Type of sample           |       | Water      |
| Date prepared            | -     | 20/02/2023 |
| Date analysed            | -     | 20/02/2023 |
| Phosphorus - Total       | mg/L  | 0.8        |

| Method ID         | Methodology Summary                                                                                                                                                                                                                                                                                   |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Inorg-055/062/127 | Total Nitrogen - Calculation sum of TKN and oxidised Nitrogen. Alternatively analysed by combustion and chemiluminescence.                                                                                                                                                                            |
| Metals-020        | Determination of various metals by ICP-AES.                                                                                                                                                                                                                                                           |
| Metals-021        | Determination of Mercury by Cold Vapour AAS.                                                                                                                                                                                                                                                          |
| Metals-022        | Determination of various metals by ICP-MS.                                                                                                                                                                                                                                                            |
| Org-020           | Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.  F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis. |
| Org-022/025       | Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS/GC-MSMS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013.                                                                           |
| Org-023           | Water samples are analysed directly by purge and trap GC-MS.                                                                                                                                                                                                                                          |
| Org-023           | Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.                                 |

Envirolab Reference: 316159

Revision No: R00

| QUALITY CONTROL: vTRH(C6-C10)/BTEXN in Water |       |     |         |            |      | Duplicate |      |      |            | Spike Recovery % |  |  |
|----------------------------------------------|-------|-----|---------|------------|------|-----------|------|------|------------|------------------|--|--|
| Test Description                             | Units | PQL | Method  | Blank      | #    | Base      | Dup. | RPD  | LCS-W1     | [NT]             |  |  |
| Date extracted                               | -     |     |         | 21/02/2023 | [NT] |           | [NT] | [NT] | 21/02/2023 |                  |  |  |
| Date analysed                                | -     |     |         | 21/02/2023 | [NT] |           | [NT] | [NT] | 21/02/2023 |                  |  |  |
| TRH C <sub>6</sub> - C <sub>9</sub>          | μg/L  | 10  | Org-023 | <10        | [NT] |           | [NT] | [NT] | 95         |                  |  |  |
| TRH C <sub>6</sub> - C <sub>10</sub>         | μg/L  | 10  | Org-023 | <10        | [NT] |           | [NT] | [NT] | 95         |                  |  |  |
| Benzene                                      | μg/L  | 1   | Org-023 | <1         | [NT] |           | [NT] | [NT] | 94         |                  |  |  |
| Toluene                                      | μg/L  | 1   | Org-023 | <1         | [NT] |           | [NT] | [NT] | 97         |                  |  |  |
| Ethylbenzene                                 | μg/L  | 1   | Org-023 | <1         | [NT] |           | [NT] | [NT] | 98         |                  |  |  |
| m+p-xylene                                   | μg/L  | 2   | Org-023 | <2         | [NT] |           | [NT] | [NT] | 93         |                  |  |  |
| o-xylene                                     | μg/L  | 1   | Org-023 | <1         | [NT] |           | [NT] | [NT] | 96         |                  |  |  |
| Naphthalene                                  | μg/L  | 1   | Org-023 | <1         | [NT] |           | [NT] | [NT] | [NT]       |                  |  |  |
| Surrogate Dibromofluoromethane               | %     |     | Org-023 | 110        | [NT] |           | [NT] | [NT] | 97         |                  |  |  |
| Surrogate toluene-d8                         | %     |     | Org-023 | 104        | [NT] |           | [NT] | [NT] | 100        |                  |  |  |
| Surrogate 4-BFB                              | %     |     | Org-023 | 103        | [NT] |           | [NT] | [NT] | 101        |                  |  |  |

Envirolab Reference: 316159

Revision No: R00

| QUALITY CONTROL: svTRH (C10-C40) in Water |       |     |         |            |      | Du   | plicate |      | Spike Re   | covery % |
|-------------------------------------------|-------|-----|---------|------------|------|------|---------|------|------------|----------|
| Test Description                          | Units | PQL | Method  | Blank      | #    | Base | Dup.    | RPD  | LCS-W1     | [NT]     |
| Date extracted                            | -     |     |         | 16/02/2023 | [NT] |      | [NT]    | [NT] | 16/02/2023 |          |
| Date analysed                             | -     |     |         | 16/02/2023 | [NT] |      | [NT]    | [NT] | 16/02/2023 |          |
| TRH C <sub>10</sub> - C <sub>14</sub>     | μg/L  | 50  | Org-020 | <50        | [NT] |      | [NT]    | [NT] | 86         |          |
| TRH C <sub>15</sub> - C <sub>28</sub>     | μg/L  | 100 | Org-020 | <100       | [NT] |      | [NT]    | [NT] | 120        |          |
| TRH C <sub>29</sub> - C <sub>36</sub>     | μg/L  | 100 | Org-020 | <100       | [NT] |      | [NT]    | [NT] | 100        |          |
| TRH >C <sub>10</sub> - C <sub>16</sub>    | μg/L  | 50  | Org-020 | <50        | [NT] |      | [NT]    | [NT] | 86         |          |
| TRH >C <sub>16</sub> - C <sub>34</sub>    | μg/L  | 100 | Org-020 | <100       | [NT] |      | [NT]    | [NT] | 120        |          |
| TRH >C <sub>34</sub> - C <sub>40</sub>    | μg/L  | 100 | Org-020 | <100       | [NT] |      | [NT]    | [NT] | 100        |          |
| Surrogate o-Terphenyl                     | %     |     | Org-020 | 75         | [NT] |      | [NT]    | [NT] | 82         |          |

| QUAL                      | ITY CONTRO | L: PAHs ir | n Water     |            |      | Du   | plicate | icate |            | Spike Recovery % |  |
|---------------------------|------------|------------|-------------|------------|------|------|---------|-------|------------|------------------|--|
| Test Description          | Units      | PQL        | Method      | Blank      | #    | Base | Dup.    | RPD   | LCS-W1     | [NT]             |  |
| Date extracted            | -          |            |             | 16/02/2023 | [NT] |      | [NT]    | [NT]  | 16/02/2023 |                  |  |
| Date analysed             | -          |            |             | 20/02/2023 | [NT] |      | [NT]    | [NT]  | 20/02/2023 |                  |  |
| Naphthalene               | μg/L       | 2          | Org-022/025 | <2         | [NT] |      | [NT]    | [NT]  | 72         |                  |  |
| Acenaphthylene            | μg/L       | 1          | Org-022/025 | <1         | [NT] |      | [NT]    | [NT]  | [NT]       |                  |  |
| Acenaphthene              | μg/L       | 1          | Org-022/025 | <1         | [NT] |      | [NT]    | [NT]  | 73         |                  |  |
| Fluorene                  | μg/L       | 1          | Org-022/025 | <1         | [NT] |      | [NT]    | [NT]  | 74         |                  |  |
| Phenanthrene              | μg/L       | 1          | Org-022/025 | <1         | [NT] |      | [NT]    | [NT]  | 82         |                  |  |
| Anthracene                | μg/L       | 1          | Org-022/025 | <1         | [NT] |      | [NT]    | [NT]  | [NT]       |                  |  |
| Fluoranthene              | μg/L       | 1          | Org-022/025 | <1         | [NT] |      | [NT]    | [NT]  | 80         |                  |  |
| Pyrene                    | μg/L       | 1          | Org-022/025 | <1         | [NT] |      | [NT]    | [NT]  | 85         |                  |  |
| Benzo(a)anthracene        | μg/L       | 1          | Org-022/025 | <1         | [NT] |      | [NT]    | [NT]  | [NT]       |                  |  |
| Chrysene                  | μg/L       | 1          | Org-022/025 | <1         | [NT] |      | [NT]    | [NT]  | 69         |                  |  |
| Benzo(b,j+k)fluoranthene  | μg/L       | 2          | Org-022/025 | <2         | [NT] |      | [NT]    | [NT]  | [NT]       |                  |  |
| Benzo(a)pyrene            | μg/L       | 1          | Org-022/025 | <1         | [NT] |      | [NT]    | [NT]  | 86         |                  |  |
| Indeno(1,2,3-c,d)pyrene   | μg/L       | 1          | Org-022/025 | <1         | [NT] |      | [NT]    | [NT]  | [NT]       |                  |  |
| Dibenzo(a,h)anthracene    | μg/L       | 1          | Org-022/025 | <1         | [NT] |      | [NT]    | [NT]  | [NT]       |                  |  |
| Benzo(g,h,i)perylene      | μg/L       | 1          | Org-022/025 | <1         | [NT] |      | [NT]    | [NT]  | [NT]       |                  |  |
| Surrogate p-Terphenyl-d14 | %          |            | Org-022/025 | 77         | [NT] |      | [NT]    | [NT]  | 77         |                  |  |

| QUALITY CO          | Duplicate |      |            |            | Spike Recovery % |      |      |      |            |      |
|---------------------|-----------|------|------------|------------|------------------|------|------|------|------------|------|
| Test Description    | Units     | PQL  | Method     | Blank      | #                | Base | Dup. | RPD  | LCS-W1     | [NT] |
| Date prepared       | -         |      |            | 17/02/2023 | [NT]             |      | [NT] | [NT] | 17/02/2023 |      |
| Date analysed       | -         |      |            | 20/02/2023 | [NT]             |      | [NT] | [NT] | 20/02/2023 |      |
| Arsenic-Dissolved   | μg/L      | 1    | Metals-022 | <1         | [NT]             |      | [NT] | [NT] | 93         |      |
| Cadmium-Dissolved   | μg/L      | 0.1  | Metals-022 | <0.1       | [NT]             |      | [NT] | [NT] | 95         |      |
| Chromium-Dissolved  | μg/L      | 1    | Metals-022 | <1         | [NT]             |      | [NT] | [NT] | 94         |      |
| Copper-Dissolved    | μg/L      | 1    | Metals-022 | <1         | [NT]             |      | [NT] | [NT] | 94         |      |
| Lead-Dissolved      | μg/L      | 1    | Metals-022 | <1         | [NT]             |      | [NT] | [NT] | 99         |      |
| Mercury-Dissolved   | μg/L      | 0.05 | Metals-021 | <0.05      | [NT]             |      | [NT] | [NT] | 97         |      |
| Nickel-Dissolved    | μg/L      | 1    | Metals-022 | <1         | [NT]             |      | [NT] | [NT] | 94         |      |
| Zinc-Dissolved      | μg/L      | 1    | Metals-022 | <1         | [NT]             |      | [NT] | [NT] | 95         |      |
| Iron-Dissolved      | μg/L      | 10   | Metals-022 | <10        | [NT]             |      | [NT] | [NT] | 93         |      |
| Manganese-Dissolved | μg/L      | 5    | Metals-022 | <5         | [NT]             |      | [NT] | [NT] | 94         |      |

| QUALITY COI             |       | Duplicate |                   |            | Spike Recovery % |      |      |      |            |      |
|-------------------------|-------|-----------|-------------------|------------|------------------|------|------|------|------------|------|
| Test Description        | Units | PQL       | Method            | Blank      | #                | Base | Dup. | RPD  | LCS-W1     | [NT] |
| Date prepared           | -     |           |                   | 16/02/2023 | [NT]             | [NT] | [NT] | [NT] | 16/02/2023 |      |
| Date analysed           | -     |           |                   | 16/02/2023 | [NT]             | [NT] | [NT] | [NT] | 16/02/2023 |      |
| Total Nitrogen in water | mg/L  | 0.1       | Inorg-055/062/127 | <0.1       | [NT]             | [NT] | [NT] | [NT] | 111        |      |

| QUALITY CC         | Duplicate |      |            |            | Spike Recovery % |      |      |      |            |      |
|--------------------|-----------|------|------------|------------|------------------|------|------|------|------------|------|
| Test Description   | Units     | PQL  | Method     | Blank      | #                | Base | Dup. | RPD  | LCS-W1     | [NT] |
| Date prepared      | -         |      |            | 20/02/2023 | [NT]             |      | [NT] | [NT] | 20/02/2023 |      |
| Date analysed      | -         |      |            | 20/02/2023 | [NT]             |      | [NT] | [NT] | 20/02/2023 |      |
| Phosphorus - Total | mg/L      | 0.05 | Metals-020 | <0.05      | [NT]             | [NT] | [NT] | [NT] | 111        |      |

Envirolab Reference: 316159

Page | 14 of 17 Revision No: R00

| Result Definiti | ons                                       |
|-----------------|-------------------------------------------|
| NT              | Not tested                                |
| NA              | Test not required                         |
| INS             | Insufficient sample for this test         |
| PQL             | Practical Quantitation Limit              |
| <               | Less than                                 |
| >               | Greater than                              |
| RPD             | Relative Percent Difference               |
| LCS             | Laboratory Control Sample                 |
| NS              | Not specified                             |
| NEPM            | National Environmental Protection Measure |
| NR              | Not Reported                              |

Envirolab Reference: 316159

Revision No: R00

| <b>Quality Contro</b>              | ol Definitions                                                                                                                                                                                                                   |
|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Blank                              | This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.           |
| Duplicate                          | This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.                                                 |
| Matrix Spike                       | A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist. |
| LCS (Laboratory<br>Control Sample) | This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.                                |
| Surrogate Spike                    | Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.                          |

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

#### **Laboratory Acceptance Criteria**

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Where matrix spike recoveries fall below the lower limit of the acceptance criteria (e.g. for non-labile or standard Organics <60%), positive result(s) in the parent sample will subsequently have a higher than typical estimated uncertainty (MU estimates supplied on request) and in these circumstances the sample result is likely biased significantly low.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

## Client Reference: S20102, Wetherill Park WME

## Report Comments

Total metals: no unfiltered, preserved sample was received, therefore analysis was conducted from the unpreserved amber sample bottle

Note: there is a possibility some elements may be underestimated.

Envirolab Reference: 316159

Revision No: R00

Page | 17 of 17



ENVIROLAB SERVICES Envirolab Services Pty Ltd
ABN 37 112 535 645
12 Ashley St Chatswood NSW 2067
ph 02 9910 6200 fax 02 9910 6201
customerservice@envirolab.com.au
www.envirolab.com.au

## **DATA QUALITY ASSESSMENT SUMMARY**

| Report Details             |                            |
|----------------------------|----------------------------|
| Envirolab Report Reference | <u>316159</u>              |
| Client ID                  | Senversa Pty Ltd           |
| Project Reference          | S20102, Wetherill Park WME |
| Date Issued                | 22/02/2023                 |

### **QC DATA**

All laboratory QC data was within the Envirolab Group's specifications.

### **HOLDING TIME COMPLIANCE EVALUATION**

All preservation / holding times (based on AS/ASPHA/ISO/NEPM/USEPA reference documents and standards) are compliant except:

| Holding Time Exceedances |           |              |                |               |          |
|--------------------------|-----------|--------------|----------------|---------------|----------|
| Analysis                 | Sample No | Date Sampled | Date Extracted | Date Analysed | Accepted |
| svTRH (C10-C40) in Water |           |              |                |               |          |
|                          | 316159-1  | 8/02/2023    | 16/02/2023     | 16/02/2023    | X        |
| PAHs in Water            |           |              |                |               |          |
|                          | 316159-1  | 8/02/2023    | 16/02/2023     | 20/02/2023    | X        |

Certain analyses have had their recommended technical holding times elongated by filtering and/or freezing on receipt at the laboratory (e.g. BOD, chlorophyll/Pheophytin, nutrients and acid sulphate soil tests).

## **COMPLIANCE TO QC FREQUENCY (NEPM)**

Internal laboratory QC rate complies with NEPM requirements (LCS/MB/MS 1 in 20, Duplicates 1 in 10 samples). Note, samples are batched together with other sample consignments in order to assign QC sample frequency.

| QC Evaluation                                                                        |   |
|--------------------------------------------------------------------------------------|---|
| Duplicate(s) was performed as per NEPM frequency                                     | ✓ |
| Laboratory Control Sample(s) were analysed with the samples received                 | ✓ |
| A Method Blank was performed with the samples received                               | ✓ |
| Matrix spike(s) was performed as per NEPM frequency (Not Applicable for Air samples) | ✓ |

Refer to Certificate of Analysis for all Quality Control data.

# senversa

## **Chain of Custody Documentation**

|                                     |                                                 |                                              |                            | Laboratory:                    | mgt/Eurofins VIC                               |               |                             |                                      |            |          | Analysis Required |     |     |   |       |                                                                                   |  |
|-------------------------------------|-------------------------------------------------|----------------------------------------------|----------------------------|--------------------------------|------------------------------------------------|---------------|-----------------------------|--------------------------------------|------------|----------|-------------------|-----|-----|---|-------|-----------------------------------------------------------------------------------|--|
| ABN 89 132 23                       |                                                 |                                              |                            | Address:<br>Contact:<br>Phone: | Sample Receipt                                 |               |                             | gen                                  |            |          |                   |     |     |   |       | Comments: e.g. Highly contaminated sat<br>hazardous materials present; trace LORs |  |
| Job Number:                         |                                                 | S2                                           | 0102                       | Purchase Order:                |                                                |               | tals s                      | Total Phosphorous and Total Nitroger |            |          |                   |     |     |   |       |                                                                                   |  |
| Project Name:                       |                                                 | Re                                           | direct                     | Quote No:                      |                                                |               | TRH/BTEX/PAH/8 Heavy metals | Total                                |            |          |                   |     |     |   |       |                                                                                   |  |
| Sampled By:                         |                                                 |                                              | HY                         | Turn Around Time               | : 24 Hou                                       | irs.          | Hear<br>Fear                | and                                  | <u>ron</u> |          | 1                 | 1 1 | - 1 |   |       |                                                                                   |  |
| Project Manage                      | r:                                              | Bec (                                        | Chapple                    | Page:                          | ge: 1                                          |               | AH<br>H                     | Shous                                | and In     |          |                   |     |     |   |       |                                                                                   |  |
| Email Report T                      | o:                                              |                                              | senversa.com.au            | Phone/Mobile:                  | 0408 038                                       | of 1          | 1 8                         | ds                                   | 88 8       |          |                   | 1 1 |     |   |       |                                                                                   |  |
|                                     |                                                 | Sample Information                           |                            | 1                              | Container Info                                 |               | l E                         | <u>F</u>                             | gane       |          | 1                 | 1 1 | - 1 |   |       |                                                                                   |  |
| Lab ID                              | Sample ID                                       | Matrix *                                     | Date                       | Time                           | Type / Code                                    | Total Bottles | 臣                           | To ago                               | Manganese  |          |                   |     |     |   | НОГВ  |                                                                                   |  |
|                                     | QC202                                           | Water                                        | 14/08/2023                 |                                |                                                |               | Х                           | Х                                    | Х          |          | -                 |     |     |   |       |                                                                                   |  |
|                                     |                                                 |                                              |                            |                                |                                                |               |                             |                                      |            |          |                   |     |     |   |       |                                                                                   |  |
|                                     |                                                 |                                              |                            |                                |                                                |               |                             |                                      |            |          |                   |     |     |   |       |                                                                                   |  |
|                                     |                                                 |                                              |                            |                                |                                                |               |                             |                                      |            |          |                   |     |     |   |       |                                                                                   |  |
|                                     |                                                 |                                              |                            |                                |                                                |               |                             |                                      |            |          |                   |     |     |   |       |                                                                                   |  |
|                                     |                                                 | -                                            |                            |                                |                                                |               |                             |                                      |            | -        |                   | +   |     |   |       |                                                                                   |  |
|                                     |                                                 |                                              |                            |                                |                                                |               |                             |                                      |            |          | -                 | -   | _   | - | -     |                                                                                   |  |
|                                     |                                                 |                                              |                            |                                |                                                |               |                             |                                      |            |          | _                 | + + |     | - | -     |                                                                                   |  |
|                                     |                                                 |                                              |                            |                                |                                                |               |                             |                                      |            | -        | -                 | + + | -   | - |       |                                                                                   |  |
|                                     |                                                 |                                              |                            |                                |                                                |               |                             |                                      |            | -        | _                 | 1   | -   |   |       |                                                                                   |  |
|                                     |                                                 |                                              |                            |                                |                                                |               |                             |                                      |            |          |                   |     |     |   |       |                                                                                   |  |
|                                     |                                                 |                                              |                            |                                |                                                |               |                             |                                      |            |          |                   |     |     |   |       |                                                                                   |  |
|                                     |                                                 |                                              |                            |                                |                                                |               |                             |                                      |            |          |                   |     |     |   |       |                                                                                   |  |
|                                     |                                                 |                                              |                            |                                |                                                |               |                             |                                      |            |          |                   |     |     |   |       |                                                                                   |  |
|                                     |                                                 |                                              |                            |                                |                                                |               |                             | 123                                  |            |          |                   |     |     |   |       |                                                                                   |  |
|                                     |                                                 |                                              |                            |                                |                                                | 1             |                             |                                      |            |          |                   |     |     |   |       |                                                                                   |  |
|                                     |                                                 |                                              |                            |                                |                                                |               |                             |                                      |            |          |                   |     |     |   |       |                                                                                   |  |
| otal                                |                                                 |                                              |                            |                                |                                                |               |                             |                                      |            |          |                   |     |     |   |       |                                                                                   |  |
| ampler: I attest<br>pecifications w | that proper field samplere used during the coll | ling procedures in a<br>lection of these sam | ccordance with Se<br>ples: | nversa standard proc           | edures and/or project                          | Sampler Name: | ŀ                           | layley Y                             | ellowlees  | Si       | gnature:          |     |     |   | Date: | 14/08/20                                                                          |  |
| elinquished By                      |                                                 |                                              |                            |                                | Method of Shipment (If ap                      | pplicable);   |                             |                                      | Receive    | d by:    | 0                 |     |     |   |       |                                                                                   |  |
| lame/Signature:                     |                                                 | Bec Chapple                                  |                            | Date: 25/8/23                  | Carrier / Reference #:                         |               |                             |                                      | Name/Si    |          |                   | com | 1   |   |       | Date: 2/8                                                                         |  |
| ame/Signature:                      |                                                 |                                              |                            | Time:                          | Date/Time:                                     |               |                             | _                                    |            | mu       | _                 |     |     |   |       | Time: 12:12                                                                       |  |
| rf:                                 |                                                 |                                              |                            | Time:                          | Carrier / Reference #: Date/Time:              |               |                             |                                      | Name/Si    | gnature: |                   |     |     |   |       | Date: Time:                                                                       |  |
| ame/Signature:                      |                                                 |                                              |                            | Date:                          | Carrier / Reference #:                         |               |                             | -                                    | Name/Si    | anature: |                   |     |     |   |       | Date:                                                                             |  |
| f:                                  |                                                 |                                              |                            | Time:                          | Date/Time:<br>Nitric Preserved ORC; SH = Sodiu |               |                             |                                      | Of-        |          |                   |     |     |   |       |                                                                                   |  |

7.1 Report # 1020195



**Eurofins Environment Testing Australia Pty Ltd** 

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South Grovedale VIC 3175 VIC 3216 Tel: +61 3 8564 5000 Tel: +61 3 8564 5000 Tel: +61 2 9900 8400 NATA# 1261 NATA# 1261

Geelong 19/8 Lewalan Street Site# 25403

Sydney 179 Magowar Road Girraween NSW 2145 NATA# 1261 Site# 18217

Canberra Unit 1.2 Dacre Street Mitchell ACT 2911 Tel: +61 2 6113 8091 NATA# 1261 Site# 25466

Brisbane 1/21 Smallwood Place 1/2 Frost Drive Murarrie QLD 4172 Tel: +61 7 3902 4600 NATA# 1261 NATA# 1261 Site# 20794

Newcastle Mayfield West NSW 2304 Tel: +61 2 4968 8448 Site# 25079 & 25289

www.eurofins.com.au

ABN: 91 05 0159 898

Perth 46-48 Banksia Road Welshpool WA 6106 Tel: +61 8 6253 4444 NATA# 2377 Site# 2370

EnviroSales@eurofins.com

NZBN: 9429046024954

Auckland Christchurch 35 O'Rorke Road 43 Detroit Drive Penrose, Rolleston, Auckland 1061 Christchurch 7675 Tel: +64 9 526 4551 Tel: +64 3 343 5201 IANZ# 1327 IANZ# 1290

Tauranga 1277 Cameron Road Gate Pa, Tauranga 3112 IANZ# 1402

## Sample Receipt Advice

Company name:

Senversa Pty Ltd NSW

Contact name: Project name: Project ID:

Bec Chapple REDIRECT S20102

1020195

Turnaround time: Date/Time received

1 Day Aug 25, 2023 12:11 PM

**Eurofins reference** 

## Sample Information

- A detailed list of analytes logged into our LIMS, is included in the attached summary table.
- All samples have been received as described on the above COC.
- COC has been completed correctly.
- Attempt to chill was evident.
- Appropriately preserved sample containers have been used.
- All samples were received in good condition.
- Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- Appropriate sample containers have been used.
- Sample containers for volatile analysis received with zero headspace.
- Split sample sent to requested external lab.
- X Some samples have been subcontracted.
- N/A Custody Seals intact (if used).

### **Notes**

### Contact

If you have any questions with respect to these samples, please contact your Analytical Services Manager:

Hannah Mawbey on phone: or by email: Hannah Mawbey@eurofins.com

Results will be delivered electronically via email to Bec Chapple - bec.chapple@senversa.com.au.

Note: A copy of these results will also be delivered to the general Senversa Pty Ltd NSW email address.





web: www.eurofins.com.au email: EnviroSales@eurofins.com

#### **Eurofins Environment Testing Australia Pty Ltd**

NATA# 1261

Site# 25403

ABN: 50 005 085 521

NATA# 1261

Site# 1254

Melbourne 6 Monterey Road Dandenong South VIC 3175

Geelong Sydney 19/8 Lewalan Street 179 Magowar Road Grovedale Girraween VIC 3216 NSW 2145

NATA# 1261

Site# 18217

Canberra Mitchell ACT 2911

NATA# 1261

Site# 25466

Brisbane Newcastle Unit 1.2 Dacre Street 1/21 Smallwood Place 1/2 Frost Drive Murarrie Mayfield West NSW 2304 QLD 4172 Tel: +61 2 4968 8448 Tel: +61 3 8564 5000 Tel: +61 3 8564 5000 Tel: +61 2 9900 8400 Tel: +61 2 6113 8091 Tel: +61 7 3902 4600 NATA# 1261 NATA# 1261 Site# 25079 & 25289 Site# 20794

Received:

**Priority:** 

Due:

ABN: 91 05 0159 898

46-48 Banksia Road

Tel: +61 8 6253 4444

Perth

Welshpool

WA 6106

NATA# 2377

Site# 2370

NZBN: 9429046024954

Auckland Christchurch Tauranga 35 O'Rorke Road 43 Detroit Drive 1277 Cameron Road, Penrose, Rolleston. Gate Pa, Auckland 1061 Christchurch 7675 Tauranga 3112 Tel: +64 9 526 4551 Tel: +64 3 343 5201 Tel: +64 9 525 0568 IANZ# 1327 IANZ# 1290 IANZ# 1402

Aug 25, 2023 12:11 PM

Aug 28, 2023

**Company Name:** 

Address:

Senversa Pty Ltd NSW

Level 24, 1 Market Street

SYDNEY

NSW 2000

**Project Name:** Project ID:

REDIRECT S20102

Order No.:

Phone:

Report #:

1020195 02 9994 8016

Fax:

03 9606 0074

**Contact Name:** Bec Chapple

**Eurofins Analytical Services Manager: Hannah Mawbey** 

1 Day

|      |                 | Sa              | mple Detail      |        |               | Iron | Manganese | Phosphate total (as P) | Total Nitrogen (as N) | Eurofins Suite B7 |
|------|-----------------|-----------------|------------------|--------|---------------|------|-----------|------------------------|-----------------------|-------------------|
| Melb | ourne Laborato  | ory - NATA # 12 | 61 Site # 12     | 54     |               |      |           |                        | Х                     | Х                 |
| Sydr | ney Laboratory  | - NATA # 1261   | Site # 18217     |        |               | Х    | Х         | Х                      |                       | Х                 |
| Exte | rnal Laboratory |                 |                  |        |               |      |           |                        |                       |                   |
| No   | Sample ID       | Sample Date     | Sampling<br>Time | Matrix | LAB ID        |      |           |                        |                       |                   |
| 1    | QC202           | Aug 14, 2023    |                  | Water  | S23-Au0064866 | Χ    | Х         | Х                      | Х                     | Х                 |
| Test | Counts          |                 |                  |        |               | 1    | 1         | 1                      | 1                     | 1                 |



Senversa Pty Ltd NSW Level 24, 1 Market Street SYDNEY NSW 2000





NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates.

Attention: Bec Chapple

Report1020195-WProject nameREDIRECTProject ID\$20102Received DateAug 25, 2023

| Client Sample ID                                  |           |      | QC202             |
|---------------------------------------------------|-----------|------|-------------------|
| Sample Matrix                                     |           |      | Water             |
| Eurofins Sample No.                               |           |      | S23-<br>Au0064866 |
| Date Sampled                                      |           |      | Aug 14, 2023      |
| Test/Reference                                    | LOR       | Unit |                   |
| Total Recoverable Hydrocarbons                    | ·         |      |                   |
| TRH C6-C9                                         | 0.02      | mg/L | < 0.02            |
| TRH C10-C14                                       | 0.05      | mg/L | < 0.05            |
| TRH C15-C28                                       | 0.1       | mg/L | < 0.1             |
| TRH C29-C36                                       | 0.1       | mg/L | < 0.1             |
| TRH C10-C36 (Total)                               | 0.1       | mg/L | < 0.1             |
| TRH C6-C10                                        | 0.02      | mg/L | < 0.02            |
| TRH C6-C10 less BTEX (F1)N04                      | 0.02      | mg/L | < 0.02            |
| TRH >C10-C16                                      | 0.05      | mg/L | < 0.05            |
| TRH >C10-C16 less Naphthalene (F2) <sup>N01</sup> | 0.05      | mg/L | < 0.05            |
| TRH >C16-C34                                      | 0.1       | mg/L | < 0.1             |
| TRH >C34-C40                                      | 0.1       | mg/L | < 0.1             |
| TRH >C10-C40 (total)*                             | 0.1       | mg/L | < 0.1             |
| BTEX                                              |           |      |                   |
| Benzene                                           | 0.001     | mg/L | < 0.001           |
| Toluene                                           | 0.001     | mg/L | < 0.001           |
| Ethylbenzene                                      | 0.001     | mg/L | < 0.001           |
| m&p-Xylenes                                       | 0.002     | mg/L | < 0.002           |
| o-Xylene                                          | 0.001     | mg/L | < 0.001           |
| Xylenes - Total*                                  | 0.003     | mg/L | < 0.003           |
| 4-Bromofluorobenzene (surr.)                      | 1         | %    | 95                |
| Total Recoverable Hydrocarbons - 2013 NEPM        | Fractions |      |                   |
| Naphthalene <sup>N02</sup>                        | 0.01      | mg/L | < 0.01            |
| Polycyclic Aromatic Hydrocarbons                  |           |      |                   |
| Acenaphthene                                      | 0.001     | mg/L | < 0.001           |
| Acenaphthylene                                    | 0.001     | mg/L | < 0.001           |
| Anthracene                                        | 0.001     | mg/L | < 0.001           |
| Benz(a)anthracene                                 | 0.001     | mg/L | < 0.001           |
| Benzo(a)pyrene                                    | 0.001     | mg/L | < 0.001           |
| Benzo(b&j)fluoranthene <sup>N07</sup>             | 0.001     | mg/L | < 0.001           |
| Benzo(g.h.i)perylene                              | 0.001     | mg/L | < 0.001           |
| Benzo(k)fluoranthene                              | 0.001     | mg/L | < 0.001           |
| Chrysene                                          | 0.001     | mg/L | < 0.001           |
| Dibenz(a.h)anthracene                             | 0.001     | mg/L | < 0.001           |
| Fluoranthene                                      | 0.001     | mg/L | < 0.001           |
| Fluorene                                          | 0.001     | mg/L | < 0.001           |



| Client Sample ID<br>Sample Matrix |        |      | QC202<br>Water    |
|-----------------------------------|--------|------|-------------------|
| Eurofins Sample No.               |        |      | S23-<br>Au0064866 |
| Date Sampled                      |        |      | Aug 14, 2023      |
| Test/Reference                    | LOR    | Unit |                   |
| Polycyclic Aromatic Hydrocarbons  |        |      |                   |
| Indeno(1.2.3-cd)pyrene            | 0.001  | mg/L | < 0.001           |
| Naphthalene                       | 0.001  | mg/L | < 0.001           |
| Phenanthrene                      | 0.001  | mg/L | < 0.001           |
| Pyrene                            | 0.001  | mg/L | < 0.001           |
| Total PAH*                        | 0.001  | mg/L | < 0.001           |
| 2-Fluorobiphenyl (surr.)          | 1      | %    | 71                |
| p-Terphenyl-d14 (surr.)           | 1      | %    | 130               |
|                                   |        |      |                   |
| Nitrate & Nitrite (as N)          | 0.05   | mg/L | < 0.05            |
| Nitrate (as N)                    | 0.02   | mg/L | < 0.02            |
| Nitrite (as N)                    | 0.02   | mg/L | < 0.02            |
| Phosphate total (as P)            | 0.01   | mg/L | 0.03              |
| Total Kjeldahl Nitrogen (as N)    | 0.2    | mg/L | 0.5               |
| Total Nitrogen (as N)*            | 0.2    | mg/L | 0.5               |
| Heavy Metals                      |        |      |                   |
| Arsenic                           | 0.001  | mg/L | 0.002             |
| Cadmium                           | 0.0002 | mg/L | < 0.0002          |
| Chromium                          | 0.001  | mg/L | 0.002             |
| Copper                            | 0.001  | mg/L | 0.002             |
| Iron                              | 0.05   | mg/L | 2.3               |
| Lead                              | 0.001  | mg/L | 0.002             |
| Manganese                         | 0.005  | mg/L | 5.9               |
| Mercury                           | 0.0001 | mg/L | < 0.0001          |
| Nickel                            | 0.001  | mg/L | 0.18              |
| Zinc                              | 0.005  | mg/L | 0.086             |

## Sample History

Where samples are submitted/analysed over several days, the last date of extraction is reported.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

| Description                                                          | Testing Site | Extracted    | <b>Holding Time</b> |
|----------------------------------------------------------------------|--------------|--------------|---------------------|
| Total Recoverable Hydrocarbons - 1999 NEPM Fractions                 | Sydney       | Aug 25, 2023 | 7 Days              |
| - Method: LTM-ORG-2010 TRH C6-C40                                    |              |              |                     |
| Total Recoverable Hydrocarbons - 2013 NEPM Fractions                 | Sydney       | Aug 25, 2023 | 7 Days              |
| - Method: LTM-ORG-2010 TRH C6-C40                                    |              |              |                     |
| Total Recoverable Hydrocarbons - 2013 NEPM Fractions                 | Sydney       | Aug 25, 2023 | 7 Days              |
| - Method: LTM-ORG-2010 TRH C6-C40                                    |              |              |                     |
| BTEX                                                                 | Sydney       | Aug 25, 2023 | 14 Days             |
| - Method: LTM-ORG-2010 BTEX and Volatile TRH                         |              |              |                     |
| Polycyclic Aromatic Hydrocarbons                                     | Sydney       | Aug 25, 2023 | 7 Days              |
| - Method: LTM-ORG-2130 PAH and Phenols in Soil and Water             |              |              |                     |
| Metals M8                                                            | Sydney       | Aug 28, 2023 | 28 Days             |
| - Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS |              |              |                     |
| Total Nitrogen Set (as N)                                            |              |              |                     |
| Nitrate & Nitrite (as N)                                             | Melbourne    | Aug 31, 2023 | 28 Days             |
| - Method: LTM-INO-4120 Analysis of NOx NO2 NH3 by FIA                |              |              |                     |
| Nitrate (as N)                                                       | Melbourne    | Aug 31, 2023 | 28 Days             |
| - Method: LTM-INO-4120 Analysis of NOx NO2 NH3 by FIA                |              |              |                     |
| Nitrite (as N)                                                       | Melbourne    | Aug 31, 2023 | 2 Days              |
| - Method: LTM-INO-4120 Analysis of NOx NO2 NH3 by FIA                |              |              |                     |
| Total Kjeldahl Nitrogen (as N)                                       | Melbourne    | Aug 31, 2023 | 28 Days             |
| - Method: APHA 4500-Norg B,D Total Kjeldahl Nitrogen by FIA          |              |              |                     |
| Phosphate total (as P)                                               | Sydney       | Aug 25, 2023 | 28 Days             |
| - Method: E052 Total Phosphate (as P)                                |              |              |                     |
| Heavy Metals                                                         | Sydney       | Aug 28, 2023 | 28 Days             |
| - Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS |              |              |                     |



web: www.eurofins.com.au email: EnviroSales@eurofins.com

#### **Eurofins Environment Testing Australia Pty Ltd**

NATA# 1261

Site# 25403

ABN: 50 005 085 521

NATA# 1261

Site# 1254

Melbourne Geelong 6 Monterey Road 19/8 Lewalan Street Dandenong South Grovedale VIC 3175 VIC 3216

Sydney 179 Magowar Road Girraween NSW 2145 NATA# 1261

Site# 18217

Canberra Mitchell ACT 2911

NATA# 1261

Site# 25466

Brisbane Newcastle Unit 1.2 Dacre Street 1/21 Smallwood Place 1/2 Frost Drive Murarrie Mayfield West NSW 2304 QLD 4172 Tel: +61 2 4968 8448 Tel: +61 3 8564 5000 Tel: +61 3 8564 5000 Tel: +61 2 9900 8400 Tel: +61 2 6113 8091 Tel: +61 7 3902 4600 NATA# 1261 NATA# 1261 Site# 25079 & 25289 Site# 20794

Received:

**Priority:** 

**Contact Name:** 

Due:

ABN: 91 05 0159 898

46-48 Banksia Road

Tel: +61 8 6253 4444

Perth

Welshpool

WA 6106

NATA# 2377

Site# 2370

NZBN: 9429046024954

Auckland Christchurch Tauranga 35 O'Rorke Road 43 Detroit Drive 1277 Cameron Road. Penrose, Rolleston. Gate Pa. Auckland 1061 Christchurch 7675 Tauranga 3112 Tel: +64 9 526 4551 Tel: +64 3 343 5201 Tel: +64 9 525 0568 IANZ# 1327 IANZ# 1290 IANZ# 1402

Aug 25, 2023 12:11 PM

Aug 28, 2023

Bec Chapple

**Company Name:** 

Address:

Senversa Pty Ltd NSW

Level 24, 1 Market Street SYDNEY

NSW 2000

**Project Name:** REDIRECT Project ID: S20102

Order No.: Report #:

1020195

Phone: 02 9994 8016 03 9606 0074 Fax:

**Eurofins Analytical Services Manager: Hannah Mawbey** 

1 Dav

|      |                 | Sa              | mple Detail      |        |               | Iron | Manganese | Phosphate total (as P) | Total Nitrogen (as N) | Eurofins Suite B7 |
|------|-----------------|-----------------|------------------|--------|---------------|------|-----------|------------------------|-----------------------|-------------------|
| Melb | ourne Laborato  | ory - NATA # 12 | 61 Site # 12     | 54     |               |      |           |                        | Х                     | Х                 |
| Sydr | ney Laboratory  | - NATA # 1261   | Site # 18217     | •      |               | Х    | Х         | Х                      |                       | Х                 |
| Exte | rnal Laboratory |                 |                  |        |               |      |           |                        |                       |                   |
| No   | Sample ID       | Sample Date     | Sampling<br>Time | Matrix | LAB ID        |      |           |                        |                       |                   |
| 1    | QC202           | Aug 14, 2023    |                  | Water  | S23-Au0064866 | Х    | Х         | Х                      | Х                     | Х                 |
| Test | Counts          |                 |                  |        |               | 1    | 1         | 1                      | 1                     | 1                 |



#### **Internal Quality Control Review and Glossary**

#### General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds.
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

#### **Holding Times**

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

#### Units

mg/kg: milligrams per kilogram mg/L: milligrams per litre µg/L: micrograms per litre

**ppm:** parts per million **ppb:** parts per billion
%: Percentage

org/100 mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100 mL: Most Probable Number of organisms per 100 millilitres

CFU: Colony forming unit

#### **Terms**

APHA American Public Health Association

COC Chain of Custody

CP Client Parent - QC was performed on samples pertaining to this report

CRM Certified Reference Material (ISO17034) - reported as percent recovery.

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

LOR Limit of Reporting

LCS Laboratory Control Sample - reported as percent recovery.

Method Blank

In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

NCP

Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

SPIKE Addition of the analyte to the sample and reported as percentage recovery

SRA Sample Receipt Advice

**Surr - Surrogate**The addition of a like compound to the analyte target and reported as percentage recovery.

TBTO Tributyltin oxide (bis-tributyltin oxide) - individual tributyltin compounds cannot be identified separately in the environment however free tributyltin was measured

and its values were converted stoichiometrically into tributyltin oxide for comparison with regulatory limits.

TCLP Toxicity Characteristic Leaching Procedure
TEQ Toxic Equivalency Quotient or Total Equivalence

QSM US Department of Defense Quality Systems Manual Version 5.4

US EPA United States Environmental Protection Agency

WA DWER Sum of PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

#### QC - Acceptance Criteria

The acceptance criteria should be used as a guide only and may be different when site specific Sampling Analysis and Quality Plan (SAQP) have been implemented

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR: No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR: RPD must lie between 0-30%

NOTE: pH duplicates are reported as a range not as RPD

Surrogate Recoveries: Recoveries must lie between 20-130% for Speciated Phenols & 50-150% for PFAS. SVOCs recoveries 20 - 150%

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.4 where no positive PFAS results have been reported have been reviewed and no data was affected.

#### **QC Data General Comments**

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore, laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 4. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of recovery the term "INT" appears against that analyte
- 5. For Matrix Spikes and LCS results a dash "-" in the report means that the specific analyte was not added to the QC sample.
- 6. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.



## **Quality Control Results**

| Test                                                | Units  | Result 1                              | Acceptance<br>Limits | Pass<br>Limits | Qualifying<br>Code |
|-----------------------------------------------------|--------|---------------------------------------|----------------------|----------------|--------------------|
| Method Blank                                        |        |                                       |                      |                |                    |
| Total Recoverable Hydrocarbons                      |        |                                       |                      |                |                    |
| TRH C6-C9                                           | mg/L   | < 0.02                                | 0.02                 | Pass           |                    |
| TRH C10-C14                                         | mg/L   | < 0.05                                | 0.05                 | Pass           |                    |
| TRH C15-C28                                         | mg/L   | < 0.1                                 | 0.1                  | Pass           |                    |
| TRH C29-C36                                         | mg/L   | < 0.1                                 | 0.1                  | Pass           |                    |
| TRH C6-C10                                          | mg/L   | < 0.02                                | 0.02                 | Pass           |                    |
| TRH >C10-C16                                        | mg/L   | < 0.05                                | 0.05                 | Pass           |                    |
| TRH >C16-C34                                        | mg/L   | < 0.1                                 | 0.1                  | Pass           |                    |
| TRH >C34-C40                                        | mg/L   | < 0.1                                 | 0.1                  | Pass           |                    |
| Method Blank                                        |        |                                       |                      |                |                    |
| BTEX                                                |        |                                       |                      |                |                    |
| Benzene                                             | mg/L   | < 0.001                               | 0.001                | Pass           |                    |
| Toluene                                             | mg/L   | < 0.001                               | 0.001                | Pass           |                    |
| Ethylbenzene                                        | mg/L   | < 0.001                               | 0.001                | Pass           |                    |
| m&p-Xylenes                                         | mg/L   | < 0.002                               | 0.001                | Pass           |                    |
| o-Xylene                                            | mg/L   | < 0.002                               | 0.002                | Pass           |                    |
| Xylenes - Total*                                    | mg/L   | < 0.003                               | 0.003                | Pass           |                    |
| Method Blank                                        |        | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | 0.000                | 1 455          |                    |
| Total Recoverable Hydrocarbons - 2013 NEPM Fraction | ne     |                                       |                      |                |                    |
| Naphthalene                                         | mg/L   | < 0.01                                | 0.01                 | Pass           |                    |
| Method Blank                                        | IIIg/L | V 0.01                                | 0.01                 | rass           |                    |
| Polycyclic Aromatic Hydrocarbons                    |        |                                       |                      |                |                    |
| Acenaphthene                                        | mg/L   | < 0.001                               | 0.001                | Pass           |                    |
| Acenaphthylene                                      | mg/L   | < 0.001                               | 0.001                | Pass           |                    |
| Anthracene                                          |        | < 0.001                               | 0.001                | Pass           |                    |
|                                                     | mg/L   |                                       |                      | Pass           |                    |
| Benz(a)anthracene                                   | mg/L   | < 0.001                               | 0.001                |                |                    |
| Benzo(a)pyrene                                      | mg/L   | < 0.001                               | 0.001                | Pass           |                    |
| Benzo(b&j)fluoranthene                              | mg/L   | < 0.001                               | 0.001                | Pass           |                    |
| Benzo(g.h.i)perylene                                | mg/L   | < 0.001                               | 0.001                | Pass           |                    |
| Benzo(k)fluoranthene                                | mg/L   | < 0.001                               | 0.001                | Pass           |                    |
| Chrysene                                            | mg/L   | < 0.001                               | 0.001                | Pass           |                    |
| Dibenz(a.h)anthracene                               | mg/L   | < 0.001                               | 0.001                | Pass           |                    |
| Fluoranthene                                        | mg/L   | < 0.001                               | 0.001                | Pass           |                    |
| Fluorene                                            | mg/L   | < 0.001                               | 0.001                | Pass           |                    |
| Indeno(1.2.3-cd)pyrene                              | mg/L   | < 0.001                               | 0.001                | Pass           |                    |
| Naphthalene                                         | mg/L   | < 0.001                               | 0.001                | Pass           |                    |
| Phenanthrene                                        | mg/L   | < 0.001                               | 0.001                | Pass           |                    |
| Pyrene                                              | mg/L   | < 0.001                               | 0.001                | Pass           |                    |
| Method Blank                                        |        | 1                                     |                      |                |                    |
| Heavy Metals                                        | 1      |                                       |                      | <u> </u>       |                    |
| Arsenic                                             | mg/L   | < 0.001                               | 0.001                | Pass           |                    |
| Cadmium                                             | mg/L   | < 0.0002                              | 0.0002               | Pass           |                    |
| Chromium                                            | mg/L   | < 0.001                               | 0.001                | Pass           |                    |
| Copper                                              | mg/L   | < 0.001                               | 0.001                | Pass           |                    |
| Iron                                                | mg/L   | < 0.05                                | 0.05                 | Pass           |                    |
| Lead                                                | mg/L   | < 0.001                               | 0.001                | Pass           |                    |
| Manganese                                           | mg/L   | < 0.005                               | 0.005                | Pass           |                    |
| Mercury                                             | mg/L   | 0.0001                                | 0.0001               | Pass           |                    |
| Nickel                                              | mg/L   | < 0.001                               | 0.001                | Pass           |                    |
|                                                     | mg/L   | < 0.005                               | 0.005                | Pass           | ı                  |



| Test                             |                 |              | Units | Result 1 | Acceptance<br>Limits | Pass<br>Limits | Qualifying<br>Code |
|----------------------------------|-----------------|--------------|-------|----------|----------------------|----------------|--------------------|
| Total Recoverable Hydrocarbons   |                 |              |       |          |                      |                |                    |
| TRH C6-C9                        |                 |              | %     | 78       | 70-130               | Pass           |                    |
| TRH C10-C14                      |                 |              | %     | 91       | 70-130               | Pass           |                    |
| TRH C6-C10                       |                 |              | %     | 78       | 70-130               | Pass           |                    |
| TRH >C10-C16                     |                 |              | %     | 89       | 70-130               | Pass           |                    |
| LCS - % Recovery                 |                 |              |       |          | <br>                 |                |                    |
| ВТЕХ                             |                 |              |       |          |                      |                |                    |
| Benzene                          |                 |              | %     | 95       | 70-130               | Pass           |                    |
| Toluene                          |                 |              | %     | 86       | 70-130               | Pass           |                    |
| Ethylbenzene                     |                 |              | %     | 85       | 70-130               | Pass           |                    |
| m&p-Xylenes                      |                 |              | %     | 85       | 70-130               | Pass           |                    |
| o-Xylene                         |                 |              | %     | 82       | 70-130               | Pass           |                    |
| Xylenes - Total*                 |                 |              | %     | 84       | 70-130               | Pass           |                    |
| LCS - % Recovery                 |                 |              |       |          | <br>                 |                |                    |
| Total Recoverable Hydrocarbons - | 2013 NEPM Fract | ions         |       |          |                      |                |                    |
| Naphthalene                      |                 |              | %     | 95       | 70-130               | Pass           |                    |
| LCS - % Recovery                 |                 |              |       |          |                      |                |                    |
| Polycyclic Aromatic Hydrocarbons | 3               |              |       |          |                      |                |                    |
| Acenaphthene                     |                 |              | %     | 99       | 70-130               | Pass           |                    |
| Acenaphthylene                   |                 |              | %     | 98       | 70-130               | Pass           |                    |
| Anthracene                       |                 |              | %     | 113      | 70-130               | Pass           |                    |
| Benz(a)anthracene                |                 |              | %     | 91       | 70-130               | Pass           |                    |
| Benzo(a)pyrene                   |                 |              | %     | 111      | 70-130               | Pass           |                    |
| Benzo(b&j)fluoranthene           |                 |              | %     | 109      | 70-130               | Pass           |                    |
| Benzo(g.h.i)perylene             |                 |              | %     | 118      | 70-130               | Pass           |                    |
| Benzo(k)fluoranthene             |                 |              | %     | 128      | 70-130               | Pass           |                    |
| Chrysene                         |                 |              | %     | 125      | 70-130               | Pass           |                    |
| Dibenz(a.h)anthracene            |                 |              | %     | 84       | 70-130               | Pass           |                    |
| Fluoranthene                     |                 |              | %     | 114      | 70-130               | Pass           |                    |
| Fluorene                         |                 |              | %     | 111      | 70-130               | Pass           |                    |
| Indeno(1.2.3-cd)pyrene           |                 |              | %     | 100      | 70-130               | Pass           |                    |
| Naphthalene                      |                 |              | %     | 83       | 70-130               | Pass           |                    |
| Phenanthrene                     |                 |              | %     | 95       | 70-130               | Pass           |                    |
| Pyrene                           |                 |              | %     | 113      | 70-130               | Pass           |                    |
| LCS - % Recovery                 |                 |              |       |          |                      |                |                    |
| Heavy Metals                     |                 |              |       |          |                      |                |                    |
| Arsenic                          |                 |              | %     | 101      | 80-120               | Pass           |                    |
| Cadmium                          |                 |              | %     | 101      | 80-120               | Pass           |                    |
| Chromium                         |                 |              | %     | 102      | 80-120               | Pass           |                    |
| Copper                           |                 |              | %     | 101      | 80-120               | Pass           |                    |
| Iron                             |                 |              | %     | 95       | 80-120               | Pass           |                    |
| Lead                             |                 |              | %     | 106      | 80-120               | Pass           |                    |
| Manganese                        |                 |              | %     | 100      | 80-120               | Pass           |                    |
| Mercury                          |                 |              | %     | 109      | 80-120               | Pass           |                    |
| Nickel                           |                 |              | %     | 101      | 80-120               | Pass           |                    |
| Zinc                             |                 |              | %     | 101      | 80-120               | Pass           |                    |
| Test                             | Lab Sample ID   | QA<br>Source | Units | Result 1 | Acceptance<br>Limits | Pass<br>Limits | Qualifying<br>Code |
| Spike - % Recovery               |                 |              |       |          |                      |                |                    |
| Total Recoverable Hydrocarbons   |                 |              |       | Result 1 |                      |                |                    |
| TRH C10-C14                      | S23-Au0058328   | NCP          | %     | 73       | 70-130               | Pass           |                    |
| TRH >C10-C16                     | S23-Au0058328   | NCP          | %     | 72       | 70-130               | Pass           |                    |
| Spike - % Recovery               |                 |              |       |          |                      |                |                    |
| Heavy Metals                     |                 |              |       | Result 1 |                      |                |                    |
| Arsenic                          | S23-Au0054217   | NCP          | %     | 117      | 75-125               | Pass           |                    |



| Test                           | Lab Sample ID     | QA<br>Source | Units | Result 1 |          |     | Acceptance<br>Limits | Pass<br>Limits | Qualifying<br>Code |
|--------------------------------|-------------------|--------------|-------|----------|----------|-----|----------------------|----------------|--------------------|
| Cadmium                        | L23-Au0051993     | NCP          | %     | 99       |          |     | 75-125               | Pass           |                    |
| Chromium                       | L23-Au0051993     | NCP          | %     | 88       |          |     | 75-125               | Pass           |                    |
| Copper                         | S23-Au0054217     | NCP          | %     | 85       |          |     | 75-125               | Pass           |                    |
| Iron                           | L23-Au0051993     | NCP          | %     | 82       |          |     | 75-125               | Pass           |                    |
| Lead                           | L23-Au0051993     | NCP          | %     | 81       |          |     | 75-125               | Pass           |                    |
| Manganese                      | L23-Au0051993     | NCP          | %     | 91       |          |     | 75-125               | Pass           |                    |
| Mercury                        | S23-Au0054217     | NCP          | %     | 97       |          |     | 75-125               | Pass           |                    |
| Nickel                         | S23-Au0054217     | NCP          | %     | 89       |          |     | 75-125               | Pass           |                    |
| Zinc                           | S23-Au0054217     | NCP          | %     | 85       |          |     | 75-125               | Pass           |                    |
| Test                           | Lab Sample ID     | QA<br>Source | Units | Result 1 |          |     | Acceptance<br>Limits | Pass<br>Limits | Qualifying<br>Code |
| Duplicate                      |                   |              |       |          |          |     |                      |                |                    |
| Total Recoverable Hydrocarbons |                   |              |       | Result 1 | Result 2 | RPD |                      |                |                    |
| TRH C6-C9                      | S23-Au0058331     | NCP          | mg/L  | < 0.02   | < 0.02   | <1  | 30%                  | Pass           |                    |
| TRH C10-C14                    | S23-Au0058327     | NCP          | mg/L  | < 0.05   | < 0.05   | <1  | 30%                  | Pass           |                    |
| TRH C15-C28                    | S23-Au0058327     | NCP          | mg/L  | < 0.1    | < 0.1    | <1  | 30%                  | Pass           |                    |
| TRH C29-C36                    | S23-Au0058327     | NCP          | mg/L  | < 0.1    | < 0.1    | <1  | 30%                  | Pass           |                    |
| TRH C6-C10                     | S23-Au0058331     | NCP          | mg/L  | < 0.02   | < 0.02   | <1  | 30%                  | Pass           |                    |
| TRH >C10-C16                   | S23-Au0058327     | NCP          | mg/L  | < 0.05   | < 0.05   | <1  | 30%                  | Pass           |                    |
| TRH >C16-C34                   | S23-Au0058327     | NCP          | mg/L  | < 0.1    | < 0.1    | <1  | 30%                  | Pass           |                    |
| TRH >C34-C40                   | S23-Au0058327     | NCP          | mg/L  | < 0.1    | < 0.1    | <1  | 30%                  | Pass           |                    |
| Duplicate                      | ,                 |              | J     |          |          |     |                      |                |                    |
| BTEX                           |                   |              |       | Result 1 | Result 2 | RPD |                      |                |                    |
| Benzene                        | S23-Au0058331     | NCP          | mg/L  | < 0.001  | < 0.001  | <1  | 30%                  | Pass           |                    |
| Toluene                        | S23-Au0058331     | NCP          | mg/L  | < 0.001  | < 0.001  | <1  | 30%                  | Pass           |                    |
| Ethylbenzene                   | S23-Au0058331     | NCP          | mg/L  | < 0.001  | < 0.001  | <1  | 30%                  | Pass           |                    |
| m&p-Xylenes                    | S23-Au0058331     | NCP          | mg/L  | < 0.002  | < 0.002  | <1  | 30%                  | Pass           |                    |
| o-Xylene                       | S23-Au0058331     | NCP          | mg/L  | < 0.001  | < 0.001  | <1  | 30%                  | Pass           |                    |
| Xylenes - Total*               | S23-Au0058331     | NCP          | mg/L  | < 0.003  | < 0.003  | <1  | 30%                  | Pass           |                    |
| Duplicate                      |                   |              |       |          |          |     |                      |                |                    |
| Total Recoverable Hydrocarbons | - 2013 NEPM Fract | ions         |       | Result 1 | Result 2 | RPD |                      |                |                    |
| Naphthalene                    | S23-Au0058331     | NCP          | mg/L  | < 0.01   | < 0.01   | <1  | 30%                  | Pass           |                    |
| Duplicate                      |                   |              |       |          |          |     |                      |                |                    |
| Heavy Metals                   |                   |              |       | Result 1 | Result 2 | RPD |                      |                |                    |
| Arsenic                        | S23-Au0066997     | NCP          | mg/L  | < 0.001  | < 0.001  | <1  | 30%                  | Pass           |                    |
| Cadmium                        | S23-Au0066997     | NCP          | mg/L  | < 0.0002 | < 0.0002 | <1  | 30%                  | Pass           |                    |
| Chromium                       | S23-Au0066997     | NCP          | mg/L  | < 0.001  | < 0.001  | <1  | 30%                  | Pass           |                    |
| Copper                         | S23-Au0066997     | NCP          | mg/L  | < 0.001  | < 0.001  | <1  | 30%                  | Pass           |                    |
| Iron                           | S23-Au0066997     | NCP          | mg/L  | < 0.05   | < 0.05   | <1  | 30%                  | Pass           |                    |
| Lead                           | S23-Au0066997     | NCP          | mg/L  | < 0.001  | < 0.001  | <1  | 30%                  | Pass           |                    |
| Manganese                      | S23-Au0066997     | NCP          | mg/L  | < 0.005  | < 0.005  | <1  | 30%                  | Pass           |                    |
| Mercury                        | S23-Au0066997     | NCP          | mg/L  | 0.0001   | 0.0001   | 4.8 | 30%                  | Pass           |                    |
| Nickel                         | S23-Au0066997     | NCP          | mg/L  | < 0.001  | < 0.001  | <1  | 30%                  | Pass           |                    |
| Zinc                           | S23-Au0066997     | NCP          | mg/L  | < 0.005  | < 0.005  | <1  | 30%                  | Pass           |                    |



#### Comments

### Sample Integrity

Custody Seals Intact (if used) N/A Attempt to Chill was evident Yes Sample correctly preserved Yes Appropriate sample containers have been used Yes Sample containers for volatile analysis received with minimal headspace Yes Samples received within HoldingTime Yes Some samples have been subcontracted No

#### **Qualifier Codes/Comments**

Code Description

F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).

N01

Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.

F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes. N04

Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs N07

#### Authorised by:

N02

Hannah Mawbey Analytical Services Manager Fang Yee Tan Senior Analyst-Metal Mary Makarios Senior Analyst-Inorganic Roopesh Rangarajan Senior Analyst-Organic Roopesh Rangarajan Senior Analyst-Volatile Ryan Phillips Senior Analyst-Inorganic



Final Report - this report replaces any previously issued Report

- Indicates Not Requested
- \* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

## Senversa Pty Ltd

ABN 89 132 231 380

### www.senversa.com.au

enquiries@senversa.com.au LinkedIn: Senversa

Facebook: Senversa





To the extent permissible by law, Senversa shall not be liable for any errors, omissions, defects or misrepresentations, or for any loss or damage suffered by any persons (including for reasons of negligence or otherwise).

©2021 Senversa Pty Ltd



## **Appendix B – Groundwater Monitoring Results**



MW6

|                                      |              |         |                                                                                  |                                                                    |                                                                                       | Location Code                                         |             | MW1         | MW2         | MW2         | MW3           | MW3           | MW4         | MW4         | MW6         | MW6         |
|--------------------------------------|--------------|---------|----------------------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------------------------|-------------------------------------------------------|-------------|-------------|-------------|-------------|---------------|---------------|-------------|-------------|-------------|-------------|
|                                      |              |         |                                                                                  |                                                                    |                                                                                       | Field ID                                              | MW1         | MW1         | MW2         | MW2         | MW3           | MW3           | MW4         | MW4         | MW6         | MW6         |
|                                      |              |         |                                                                                  |                                                                    |                                                                                       | Date                                                  | 08/02/2023  | 14/08/2023  | 08/02/2023  | 14/08/2023  | 08/02/2023    | 14/08/2023    | 08/02/2023  | 14/08/2023  | 08/02/2023  | 14/08/2023  |
|                                      |              |         |                                                                                  |                                                                    |                                                                                       | Sample Type                                           |             | Normal      | Normal      | Normal      | Highest Conc. | Highest Conc. | Normal      | Normal      | Normal      | Normal      |
|                                      |              |         |                                                                                  |                                                                    |                                                                                       |                                                       |             |             |             | ES2327328   | ES2304011     |               |             |             |             |             |
|                                      | _            |         | 1                                                                                |                                                                    |                                                                                       | Lab Report No.                                        | ES2304011   | ES2327328   | ES2304011   | E3232/328   | ES2304011     | ES2327328     | ES2304011   | ES2327328   | ES2304011   | ES2327328   |
|                                      | Unit         | EQL     | NEPM 2013 Table<br>1A(4) Comm/Ind HSL<br>D GW for Vapour<br>Intrusion, Clay 2-4m | Aquatic ecosystems<br>DGV - highly disturbed<br>(90%) - freshwater | Aquatic ecosystems<br>DGV - slightly to<br>moderately disturbed<br>(95%) - freshwater | NHMRC<br>(2008)Primary Contact<br>Recreation - Health |             |             |             |             |               |               |             |             |             |             |
| Physical Parameters                  |              |         |                                                                                  |                                                                    |                                                                                       |                                                       |             |             |             |             |               |               |             |             |             |             |
| Electrical Conductivity              | μS/cm        | 1       |                                                                                  |                                                                    |                                                                                       |                                                       | 25,800      | -           | 25,700      | -           | 34,200        | -             | 19,900      | -           | 2,310       | -           |
| Total Dissolved Solids               | mg/L         | 1       |                                                                                  |                                                                    |                                                                                       |                                                       | 16,800      | -           | 16,700      | -           | 22,200        | -             | 12,900      | -           | 1,500       | -           |
| pH (Lab)                             | pH Units     | 0.01    |                                                                                  |                                                                    |                                                                                       | 6.5-8.5 <sup>#14</sup>                                | 7.74        | -           | 7.70        | -           | 7.09          | -             | 7.72        | _           | 8.06        | -           |
| Inorganics                           | 1            |         |                                                                                  |                                                                    |                                                                                       |                                                       |             |             |             |             |               |               |             |             |             |             |
| Ammonia (as N)                       | mg/L         | 0.01    |                                                                                  | 1.43 <sup>#3</sup>                                                 | 0.9 <sup>#3</sup>                                                                     |                                                       | 0.71        | 0.49        | 0.52        | 0.52        | 0.22          | 0.29          | 0.34        | 0.32        | 0.02        | 0.09        |
| Nitrate (as N)                       | mg/L         | 0.01    |                                                                                  | 3.8 <sup>#4</sup>                                                  | 2.4 <sup>#4</sup>                                                                     | 110 <sup>#15</sup>                                    | <0.10       | 0.02        | 0.03        | <0.01       | <0.01         | <0.01         | 0.01        | <0.01       | 1.00        | 0.18        |
| Nitrite (as N)                       |              | 0.01    |                                                                                  | 3.0                                                                | 2.7                                                                                   | 9 <sup>#16</sup>                                      | <0.10       | <0.02       | <0.01       | <0.01       | <0.01         | <0.01         | <0.01       | <0.01       | 0.25        | <0.01       |
| Total Oxidised Nitrogen (as N)       | mg/L<br>mg/L | 0.01    |                                                                                  |                                                                    |                                                                                       | 9                                                     | <0.10       | 0.02        | 0.03        | <0.01       | <0.01         | <0.01         | 0.01        | <0.01       | 1.25        | 0.18        |
| Total Kjeldahl Nitrogen              | mg/L         | 0.01    |                                                                                  |                                                                    |                                                                                       |                                                       | 0.9         | 0.02        | 1.0         | 0.6         | 1.3           | 0.5           | 1.1         | 0.5         | 0.4         | 0.16        |
| Total Nitrogen (as N)                | mg/L         | 0.1     |                                                                                  |                                                                    |                                                                                       |                                                       | 0.9         | 0.6         | 1.0         | 0.6         | 1.3           | 0.5           | 1.1         | 0.5         | 1.6         | 0.4         |
| Phosphorus (as P)                    | mg/L         | 0.01    |                                                                                  |                                                                    |                                                                                       |                                                       | <0.05       | 0.02        | 0.06        | 0.04        | 0.12          | 0.02          | 0.09        | 0.01        | 0.09        | 0.14        |
| Phosphate (as P)                     | mg/L         | 0.01    |                                                                                  |                                                                    |                                                                                       |                                                       | -           | - 0.02      | - 0.00      | -           | -             | 0.03          | -           | -           | -           | -           |
| Ortho-phosphate (as P)               | mg/L         | 0.01    |                                                                                  |                                                                    |                                                                                       |                                                       | < 0.01      | -           | 0.02        | -           | < 0.01        | -             | < 0.01      | -           | < 0.01      | -           |
| Fluoride                             | mg/L         | 0.1     |                                                                                  |                                                                    |                                                                                       | 15 <sup>#17</sup>                                     | 0.8         | _           | 0.7         | _           | 1.2           | _             | 1.6         | _           | 1.8         | _           |
| Sodium Absorption Ratio (filtered)   | - Ilig/L     | 0.01    |                                                                                  |                                                                    |                                                                                       | 10                                                    | 30.4        | -           | 31.6        | -           | 37.8          | -             | 21.4        | -           | 6.70        | -           |
| Major lons                           | + -          | 0.01    |                                                                                  |                                                                    |                                                                                       |                                                       | 30.4        | _           | 31.0        | _           | 37.0          |               | 21.4        | _           | 0.70        | _           |
| Calcium (filtered)                   | mg/L         | 1       |                                                                                  |                                                                    |                                                                                       |                                                       | 273         | -           | 232         | -           | 181           | -             | 299         |             | 50          | -           |
| Chloride                             | mg/L         | 1       |                                                                                  |                                                                    |                                                                                       |                                                       | 8,840       | -           | 8,800       | -           | 11,900        | -             | 6,680       | -           | 341         | -           |
| Magnesium (filtered)                 | mg/L         | 1       |                                                                                  |                                                                    |                                                                                       |                                                       | 810         | -           | 826         | -           | 1,040         | -             | 786         | -           | 112         | -           |
| Potassium (filtered)                 | mg/L         | 1       |                                                                                  |                                                                    |                                                                                       |                                                       | 25          | _           | 21          | _           | 14            | _             | 35          | _           | 6           | -           |
| Sulfate (as SO4) (filtered)          | mg/L         | 1       |                                                                                  |                                                                    |                                                                                       |                                                       | 691         | -           | 756         | -           | 907           | -             | 280         | _           | 44          | -           |
| Sodium (filtered)                    | mg/L         | 1       |                                                                                  |                                                                    |                                                                                       |                                                       | 4,430       | -           | 4,590       | -           | 5,980         | -             | 3,100       | -           | 373         | -           |
| Anions Total                         | meg/L        | 0.01    |                                                                                  |                                                                    |                                                                                       |                                                       | 282         | -           | 280         | -           | 359           | -             | 216         | _           | 27.2        | -           |
| Cations Total                        | meq/L        | 0.01    |                                                                                  |                                                                    |                                                                                       |                                                       | 274         | -           | 280         | -           | 355           | -             | 215         | -           | 28.1        | -           |
| Ionic Balance                        | %            | 0.01    |                                                                                  |                                                                    |                                                                                       |                                                       | 1.52        | -           | 0.09        | -           | 0.55          | -             | 0.25        | -           | 1.61        | -           |
| Alkalinity                           |              |         |                                                                                  |                                                                    |                                                                                       |                                                       | _           |             |             |             |               |               |             |             | -           |             |
| Bicarbonate Alkalinity (as CaCO3)    | mg/L         | 1       |                                                                                  |                                                                    |                                                                                       |                                                       | 916         | -           | 815         | -           | 222           | -             | 1,110       | -           | 834         | -           |
| Carbonate Alkalinity (as CaCO3)      | mg/L         | 1       |                                                                                  |                                                                    |                                                                                       |                                                       | <1          | -           | <1          | -           | <1            | -             | <1          | -           | <1          | -           |
| Hydroxide Alkalinity (as CaCO3)      | mg/L         | 1       |                                                                                  |                                                                    |                                                                                       |                                                       | <1          | -           | <1          | -           | <1            | -             | <1          | -           | <1          | -           |
| Total Alkalinity (as CaCO3)          | mg/L         | 1       |                                                                                  |                                                                    |                                                                                       |                                                       | 916         | -           | 815         | -           | 222           | -             | 1,110       | -           | 834         | -           |
| Hardness (as CaCO3) (filtered)       | mg/L         | 1       |                                                                                  |                                                                    |                                                                                       |                                                       | 4,020       | -           | 3,980       | -           | 4,730         | -             | 3,980       | -           | 586         | -           |
| Metals                               |              |         |                                                                                  |                                                                    |                                                                                       |                                                       |             |             |             |             |               |               |             |             |             |             |
| Arsenic (filtered)                   | mg/L         | 0.001   |                                                                                  | 0.042#5                                                            | 0.013 <sup>#5</sup>                                                                   | 0.1 #17                                               | 0.011       | 0.008       | 0.004       | 0.004       | 0.004         | 0.002         | 0.005       | 0.007       | < 0.001     | 0.002       |
| Cadmium (filtered)                   | mg/L         | 0.0001  |                                                                                  | 0.0004 <sup>#6</sup>                                               | 0.0002 <sup>#6</sup>                                                                  | 0.02 #17                                              | < 0.0001    | < 0.0001    | < 0.0001    | < 0.0001    | 0.0001        | < 0.0010      | < 0.0001    | < 0.0001    | < 0.0001    | < 0.0001    |
| Chromium (filtered)                  | mg/L         | 0.001   |                                                                                  | 0.0033 <sup>#13</sup>                                              | 0.001 <sup>#7</sup>                                                                   | 0.5 #18                                               | < 0.001     | < 0.001     | < 0.001     | < 0.001     | 0.002         | 0.002         | < 0.001     | < 0.001     | < 0.001     | < 0.001     |
| Copper (filtered)                    | mg/L         | 0.001   |                                                                                  | 0.0018 <sup>#3</sup>                                               | 0.0014#3                                                                              | 20 <sup>#17</sup>                                     | 0.015       | <0.001      | 0.011       | <0.001      | <0.010        | 0.002         | 0.005       | <0.001      | 0.003       | <0.001      |
| Iron (filtered)                      | mg/L         | 0.001   |                                                                                  | 0.0010                                                             | 0.0014                                                                                | 140#19                                                | 4.97        | 2.01        | 0.40        | 0.58        | 5.7           | 6.04          | 1.22        | 2.91        | < 0.05      | 0.20        |
|                                      |              |         |                                                                                  | 0.0056 <sup>#6</sup>                                               | 0.0034#6                                                                              | 0.1 #17                                               |             |             |             |             | 0.001         | 0.002         |             | 1           |             |             |
| Lead (filtered)                      | mg/L         | 0.001   |                                                                                  | #6                                                                 |                                                                                       | 77.77                                                 | <0.001      | <0.001      | <0.001      | <0.001      |               |               | <0.001      | <0.001      | <0.001      | <0.001      |
| Manganese (filtered)                 | mg/L         | 0.001   |                                                                                  | 2.5#3                                                              | 1.9#3                                                                                 | 5#17                                                  | 0.92        | 2.26        | 0.96        | 1.00        | 6.15          | 6.57          | 5.45        | 6.04        | 0.04        | 0.225       |
| Mercury (filtered)                   | mg/L         | 0.00005 |                                                                                  | 0.0006 <sup>#8</sup>                                               | 0.00006#8                                                                             | 0.01 #17                                              | <0.0001     | <0.0001     | <0.0001     | <0.0001     | <0.0001       | <0.0001       | <0.0001     | <0.0001     | <0.0001     | <0.0001     |
| Nickel (filtered)                    | mg/L         | 0.001   |                                                                                  | 0.013 <sup>#6</sup>                                                | 0.011#6                                                                               | 0.2 #17                                               | 0.023       | 0.036       | 0.006       | 0.005       | 0.18          | 0.207         | 0.021       | 0.020       | < 0.001     | 0.002       |
| Zinc (filtered)                      | mg/L         | 0.001   |                                                                                  | 0.015 <sup>#6</sup>                                                | 0.008 <sup>#6</sup>                                                                   | 60 <sup>#19</sup>                                     | 0.012       | 0.045       | 0.008       | 0.009       | 0.23          | 0.122         | < 0.005     | < 0.005     | < 0.005     | 0.006       |
| BTEX                                 |              |         |                                                                                  |                                                                    |                                                                                       |                                                       |             |             |             |             |               |               |             |             |             |             |
| Benzene                              | μg/L         | 1       | 30,000                                                                           | 1,300 <sup>#3</sup>                                                | 950 <sup>#3</sup>                                                                     | 10 <sup>#17</sup>                                     | <1          | <1          | <1          | <1          | <1            | <1            | <1          | <1          | <1          | <1          |
| Toluene                              | μg/L         | 1       | NL                                                                               | 230 <sup>#3</sup>                                                  | 180 <sup>#3</sup>                                                                     | 8,000 #17                                             | <2          | <2          | <2          | <2          | <2            | <2            | <2          | <2          | <2          | <2          |
| Ethylbenzene                         | μg/L         | 1       | NL                                                                               | 110 <sup>#3</sup>                                                  | 80 <sup>#3</sup>                                                                      | 3,000 #17                                             | <2          | <2          | <2          | <2          | <2            | <2            | <2          | <2          | <2          | <2          |
| Xylene (m & p)                       | µg/L         | 2       |                                                                                  |                                                                    |                                                                                       | ,                                                     | <2          | <2          | <2          | <2          | <2            | <2            | <2          | <2          | <2          | <2          |
| Xylene (o)                           | μg/L         | 1       |                                                                                  | 470 <sup>#3</sup>                                                  | 350 <sup>#3</sup>                                                                     |                                                       | <2          | <2          | <2          | <2          | <2            | <2            | <2          | <2          | <2          | <2          |
| Total Xylene                         | μg/L         | 2       | NL                                                                               | •                                                                  | 1 22                                                                                  | 6.000 #17                                             | <2          | <2          | <2          | <2          | <2            | <2            | <2          | <2          | <2          | <2          |
| Total BTEX                           | μg/L         | 1       | HE                                                                               |                                                                    |                                                                                       | 0,000                                                 | <1          | <1          | <1          | <1          | <1            | <1            | <1          | <1          | <1          | <1          |
| Total Petroleum Hydrocarbons         | μ9/ L        | '       |                                                                                  |                                                                    |                                                                                       |                                                       |             | \1          | \           | <u> </u>    | \ 1           | \1            | <u> </u>    | \ 1         | \ 1         | <u> </u>    |
| C6-C9 Fraction                       | μg/L         | 10      |                                                                                  |                                                                    |                                                                                       |                                                       | <20         | <20         | <20         | <20         | <20           | <20           | <20         | <20         | <20         | <20         |
| C10-C14 Fraction                     |              | 50      |                                                                                  |                                                                    |                                                                                       |                                                       | <50         | <50         | <50         | <50         | <50           | <50           | <50         | <50         | <50         | <50         |
|                                      | UU/L         |         |                                                                                  |                                                                    |                                                                                       |                                                       |             |             |             |             |               | -00           | -00         | -00         | -00         | -00         |
| C15-C28 Fraction                     | μg/L<br>μg/L |         |                                                                                  |                                                                    |                                                                                       |                                                       |             |             |             |             | 140           | <100          | <100        | <100        | <100        | <100        |
| C15-C28 Fraction<br>C29-C36 Fraction | μg/L<br>μg/L | 100     |                                                                                  |                                                                    |                                                                                       |                                                       | <100<br><50 | <100<br><50 | <100<br><50 | <100<br><50 | 140<br><50    | <100<br><50   | <100<br><50 | <100<br><50 | <100<br><50 | <100<br><50 |
|                                      | μg/L         | 100     |                                                                                  |                                                                    |                                                                                       |                                                       | <100        | <100        | <100        | <100        |               |               |             |             |             |             |

Location Code

MW1

MW1

MW2

MW2

MW3

MW3

MW4

MW4

MW6



MW6

|                                                       |                                         |     |                                                                                  |                                                                    |                                                                                       | Location Code         | IVIVVT       | IVIVV 1      | IVIVVZ       | IVIVVZ       | IVIVV3        | IVIVV 3       | IVIVV4     | IVIVV4       | IVIVV6       | IVIVV6       |
|-------------------------------------------------------|-----------------------------------------|-----|----------------------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------------------------|-----------------------|--------------|--------------|--------------|--------------|---------------|---------------|------------|--------------|--------------|--------------|
|                                                       |                                         |     |                                                                                  |                                                                    |                                                                                       | Field ID              | MW1          | MW1          | MW2          | MW2          | MW3           | MW3           | MW4        | MW4          | MW6          | MW6          |
|                                                       |                                         |     |                                                                                  |                                                                    |                                                                                       | Date                  | 08/02/2023   | 14/08/2023   | 08/02/2023   | 14/08/2023   | 08/02/2023    | 14/08/2023    | 08/02/2023 | 14/08/2023   | 08/02/2023   | 14/08/2023   |
|                                                       |                                         |     |                                                                                  |                                                                    |                                                                                       | Sample Type           | Normal       | Normal       | Normal       | Normal       | Highest Conc. | Highest Conc. | Normal     | Normal       | Normal       | Normal       |
| _                                                     |                                         |     |                                                                                  |                                                                    |                                                                                       | Lab Report No.        | ES2304011    | ES2327328    | ES2304011    | ES2327328    | ES2304011     | ES2327328     | ES2304011  | ES2327328    | ES2304011    | ES2327328    |
|                                                       | Unit                                    | EQL | NEPM 2013 Table<br>1A(4) Comm/Ind HSL<br>D GW for Vapour<br>Intrusion, Clay 2-4m | Aquatic ecosystems<br>DGV - highly disturbed<br>(90%) - freshwater | Aquatic ecosystems<br>DGV - slightly to<br>moderately disturbed<br>(95%) - freshwater | NHMRC                 |              |              |              |              |               |               |            |              |              |              |
| Total Recoverable Hydrocarbons                        | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 40  |                                                                                  |                                                                    |                                                                                       |                       | 00           | 00           | 0.0          | 00           | 00            | 00            | 00         | 00           | 00           |              |
| C6-C10 Fraction                                       | μg/L                                    | 10  | #1                                                                               | #9                                                                 | #9                                                                                    | #20                   | <20          | <20          | <20          | <20          | <20           | <20           | <20        | <20          | <20          | <20          |
| C6-C10 Fraction minus BTEX (F1)                       | μg/L                                    | 10  | NL <sup>#1</sup>                                                                 | 440 <sup>#9</sup>                                                  | 440#9                                                                                 | 900 #20               | <20          | <20          | <20          | <20          | <20           | <20           | <20        | <20          | <20          | <20          |
| >C10-C16 Fraction >C10-C16 Fraction minus naphthalene | μg/L                                    | 50  |                                                                                  |                                                                    |                                                                                       |                       | <100         | <100         | <100         | <100         | 130           | <100          | <100       | <100         | <100         | <100         |
| (F2)                                                  | μg/L                                    | 50  | NL <sup>#2</sup>                                                                 | 440 <sup>#9</sup>                                                  | 440 <sup>#9</sup>                                                                     | 900 #20               | <100         | <100         | <100         | <100         | 130           | <100          | -100       | <100         | <100         | <100         |
|                                                       |                                         |     | NL                                                                               | 640 <sup>#10</sup>                                                 | 640 <sup>#10</sup>                                                                    | 900 #21               |              |              |              | 1            |               | 1             | <100       | 1            |              |              |
| >C16-C34 Fraction                                     | μg/L                                    | 100 |                                                                                  | 640 <sup>#11</sup>                                                 | 640 <sup>#11</sup>                                                                    |                       | <100         | <100         | <100         | <100         | <100          | <100          | <100       | <100         | <100         | <100         |
| >C34-C40 Fraction<br>>C10-C40 Fraction (Sum)          | μg/L                                    | 100 |                                                                                  | 640                                                                | 640                                                                                   | 900 #21               | <100         | <100         | <100         | <100         | <100          | <100          | <100       | <100         | <100         | <100         |
| PAHs                                                  | μg/L                                    | 50  |                                                                                  |                                                                    |                                                                                       |                       | <100         | <100         | <100         | <100         | 130           | <100          | <100       | <100         | <100         | <100         |
| -                                                     | μg/L                                    | - 1 |                                                                                  |                                                                    |                                                                                       | 5,350 <sup>#19</sup>  | <1.0         | <1.0         | <1.0         | <1.0         | <1.0          | <1.0          | <1.0       | <1.0         | <1.0         | <1.0         |
| Acenaphthene Acenaphthylene                           | μg/L<br>μg/L                            | 1   |                                                                                  |                                                                    |                                                                                       | 5,350                 | <1.0         | <1.0         | <1.0         | <1.0         | <1.0          | <1.0          | <1.0       | <1.0         | <1.0         | <1.0         |
|                                                       |                                         | 1   |                                                                                  | 0.4 <sup>#8</sup>                                                  | 0.01 <sup>#8</sup>                                                                    | 17,700 #19            |              |              |              |              | <1.0          | <1.0          | <1.0       |              |              |              |
| Anthracene Benz(a)anthracene                          | μg/L<br>μg/L                            | 1   |                                                                                  | 0.4                                                                | 0.01                                                                                  | 17,700                | <1.0<br><1.0 | <1.0<br><1.0 | <1.0<br><1.0 | <1.0<br><1.0 | <1.0          | <1.0          | <1.0       | <1.0<br><1.0 | <1.0<br><1.0 | <1.0<br><1.0 |
|                                                       | μg/L                                    | 0.5 |                                                                                  | 0.2 <sup>#8</sup>                                                  | 0.1 <sup>#8</sup>                                                                     | 0.1 #17               | <0.5         | <0.5         | <0.5         | <0.5         | <0.5          | <0.5          | <0.5       | <0.5         | <0.5         | <0.5         |
| Benzo(a)pyrene Benzo(b+j)fluoranthene                 | μg/L<br>μg/L                            | 1   |                                                                                  | 0.2                                                                | U.1                                                                                   | 0.1                   | <0.5         | <1.0         | <1.0         | <0.5         | <0.5          | <0.5          | <1.0       | <0.5         | <1.0         | <1.0         |
| Benzo(g,h,i)perylene                                  | μg/L                                    | 1   |                                                                                  |                                                                    |                                                                                       |                       | <1.0         | <1.0         | <1.0         | <1.0         | <1.0          | <1.0          | <1.0       | <1.0         | <1.0         | <1.0         |
| Benzo(b+j+k)fluoranthene                              | μg/L                                    | 2   |                                                                                  |                                                                    |                                                                                       |                       | -            | -            | -            | -            | -             | -             | -          | -            | -            | -            |
| Benzo(k)fluoranthene                                  | μg/L                                    | 1   |                                                                                  |                                                                    |                                                                                       |                       | <1.0         | <1.0         | <1.0         | <1.0         | <1.0          | <1.0          | <1.0       | <1.0         | <1.0         | <1.0         |
| Chrysene                                              | μg/L                                    | 1   |                                                                                  |                                                                    |                                                                                       |                       | <1.0         | <1.0         | <1.0         | <1.0         | <1.0          | <1.0          | <1.0       | <1.0         | <1.0         | <1.0         |
| Dibenz(a,h)anthracene                                 | μg/L                                    | 1   |                                                                                  |                                                                    |                                                                                       |                       | <1.0         | <1.0         | <1.0         | <1.0         | <1.0          | <1.0          | <1.0       | <1.0         | <1.0         | <1.0         |
| Fluoranthene                                          | μg/L                                    | 1   |                                                                                  | 1.4 <sup>#8</sup>                                                  | 1 <sup>#8</sup>                                                                       | 8.020 #19             | <1.0         | <1.0         | <1.0         | <1.0         | <1.0          | <1.0          | <1.0       | <1.0         | <1.0         | <1.0         |
| Fluorene                                              | μg/L                                    | 1   |                                                                                  |                                                                    |                                                                                       | 2,940 #19             | <1.0         | <1.0         | <1.0         | <1.0         | <1.0          | <1.0          | <1.0       | <1.0         | <1.0         | <1.0         |
| Indeno(1,2,3-c,d)pyrene                               | μg/L                                    | 1   |                                                                                  |                                                                    |                                                                                       | ,                     | <1.0         | <1.0         | <1.0         | <1.0         | <1.0          | <1.0          | <1.0       | <1.0         | <1.0         | <1.0         |
| Naphthalene                                           | μg/L                                    | 1   | NL                                                                               | 37 <sup>#3</sup>                                                   | 16 <sup>#3</sup>                                                                      | 700#22                | <1.0         | <1.0         | <1.0         | <1.0         | <1.0          | <1.0          | <1.0       | <1.0         | <1.0         | <1.0         |
| Phenanthrene                                          | μg/L                                    | 1   |                                                                                  | 2 <sup>#8</sup>                                                    | 0.6#8                                                                                 |                       | <1.0         | <1.0         | <1.0         | <1.0         | <1.0          | <1.0          | <1.0       | <1.0         | <1.0         | <1.0         |
| Pyrene                                                | μg/L                                    | 1   |                                                                                  |                                                                    |                                                                                       | 1,210 <sup>#19</sup>  | <1.0         | <1.0         | <1.0         | <1.0         | <1.0          | <1.0          | <1.0       | <1.0         | <1.0         | <1.0         |
| Benzo(a)pyrene TEQ (Zero)                             | μg/L                                    | 0.5 |                                                                                  |                                                                    |                                                                                       | 0.1 #23               | <0.5         | <0.5         | <0.5         | <0.5         | <0.5          | <0.5          | <0.5       | <0.5         | <0.5         | <0.5         |
| Sum of Polycyclic aromatic hydrocarbons               |                                         | 0.0 |                                                                                  |                                                                    |                                                                                       | 0.7                   | V0.0         | <b>VO.</b> 0 | V0.0         | νο.σ         | V0.0          | V0.0          | V0.0       | <b>\\0.0</b> | V0.0         | V0.0         |
| (PAH)                                                 | μg/L                                    | 0.5 |                                                                                  |                                                                    |                                                                                       |                       | < 0.5        | < 0.5        | < 0.5        | < 0.5        | < 0.5         | < 0.5         | < 0.5      | < 0.5        | < 0.5        | < 0.5        |
| Benzo(a)pyrene TEQ                                    | μg/L                                    | 5   |                                                                                  |                                                                    |                                                                                       | 0.1 <sup>#23</sup>    | -            | -            | -            | -            | -             | -             | -          | -            | -            | -            |
| Total Positive PAHs                                   | μg/L                                    | 1   |                                                                                  |                                                                    |                                                                                       |                       | -            | -            | -            | -            | 0             | -             | -          | -            | -            | -            |
| Phenols                                               |                                         |     |                                                                                  |                                                                    |                                                                                       |                       |              |              |              |              |               |               |            |              |              |              |
| 2-Methylphenol                                        | μg/L                                    | 1   |                                                                                  |                                                                    |                                                                                       | 9,260 #19             | <1.0         | -            | <1.0         | -            | <1.0          | -             | <1.0       | -            | <1.0         | -            |
| 2-Nitrophenol                                         | μg/L                                    | 1   |                                                                                  |                                                                    |                                                                                       |                       | <1.0         | -            | <1.0         | -            | <1.0          | -             | <1.0       | -            | <1.0         | -            |
| 2,4-Dimethylphenol                                    | μg/L                                    | 1   |                                                                                  | 2 <sup>#12</sup>                                                   | 2 <sup>#12</sup>                                                                      | 3,550 #19             | <1.0         | -            | <1.0         | -            | <1.0          | -             | <1.0       | -            | <1.0         | -            |
| 3-&4-Methylphenol (m&p-cresol)                        | μg/L                                    | 2   |                                                                                  |                                                                    |                                                                                       |                       | <2.0         | -            | <2.0         | -            | <2.0          | -             | <2.0       | -            | <2.0         | -            |
| 4-Chloro-3-methylphenol                               | μg/L                                    | 1   |                                                                                  |                                                                    |                                                                                       | 14,500 <sup>#19</sup> | <1.0         | -            | <1.0         | -            | <1.0          | -             | <1.0       | -            | <1.0         | -            |
| Phenol                                                | μg/L                                    | 1   |                                                                                  | 600 <sup>#3</sup>                                                  | 320 <sup>#3</sup>                                                                     | 57,700 <sup>#19</sup> | <1.0         | -            | <1.0         | -            | <1.0          | -             | <1.0       | -            | <1.0         | -            |
| Halogenated Phenols                                   |                                         |     |                                                                                  |                                                                    |                                                                                       |                       |              |              |              |              |               |               |            |              |              |              |
| 2,4,5-Trichlorophenol                                 | μg/L                                    | 1   |                                                                                  |                                                                    |                                                                                       | 11,800 <sup>#19</sup> | <1.0         | -            | <1.0         | -            | <1.0          | -             | <1.0       | -            | <1.0         | -            |
| 2,4,6-Trichlorophenol                                 | μg/L                                    | 1   |                                                                                  | 20 <sup>#8</sup>                                                   | 3 <sup>#8</sup>                                                                       | 200#17                | <1.0         | -            | <1.0         | -            | <1.0          | -             | <1.0       | -            | <1.0         | -            |
| 2,4-Dichlorophenol                                    | μg/L                                    | 1   |                                                                                  | 160 <sup>#8</sup>                                                  | 120#8                                                                                 | 2,000 #17             | <1.0         | -            | <1.0         | -            | <1.0          | -             | <1.0       | -            | <1.0         | -            |
| 2,6-Dichlorophenol                                    | μg/L                                    | 1   |                                                                                  | 34 <sup>#12</sup>                                                  | 34 <sup>#12</sup>                                                                     | ,                     | <1.0         | -            | <1.0         | -            | <1.0          | -             | <1.0       | -            | <1.0         | _            |
| 2-Chlorophenol                                        | μg/L                                    | 1   |                                                                                  | 490 <sup>#8</sup>                                                  | 340#8                                                                                 | 3,000 #17             | <1.0         | _            | <1.0         | _            | <1.0          | _             | <1.0       | -            | <1.0         | _            |
| Pentachlorophenol                                     | μg/L                                    | 2   |                                                                                  | 10 <sup>#8</sup>                                                   | 3.6 <sup>#8</sup>                                                                     | 100 <sup>#17</sup>    | <2.0         | _            | <2.0         | _            | <2.0          |               | <2.0       |              | <2.0         | -            |
| т співопіогорпеної                                    | 1 ha/r                                  |     |                                                                                  | 10                                                                 | J.0                                                                                   | 100                   | \Z.U         | -            | \Z.U         | · ·          | \Z.U          | ·             | \Z.U       | · -          | \Z.U         |              |

Location Code

MW1

MW1

MW2

MW2

MW3

MW3

MW4

MW4

MW6



MW6

MW6

|  |      |     |                                                                                  |                        |                                                                                       | Date           | 08/02/2023 | 14/08/2023 | 08/02/2023 | 14/08/2023 | 08/02/2023    | 14/08/2023    | 08/02/2023 | 14/08/2023 | 08/02/2023 | 14/08/2023 |
|--|------|-----|----------------------------------------------------------------------------------|------------------------|---------------------------------------------------------------------------------------|----------------|------------|------------|------------|------------|---------------|---------------|------------|------------|------------|------------|
|  |      |     |                                                                                  |                        |                                                                                       | Sample Type    | Normal     | Normal     | Normal     | Normal     | Highest Conc. | Highest Conc. | Normal     | Normal     | Normal     | Normal     |
|  |      |     |                                                                                  |                        |                                                                                       | Lab Report No. | ES2304011  | ES2327328  | ES2304011  | ES2327328  | ES2304011     | ES2327328     | ES2304011  | ES2327328  | ES2304011  | ES2327328  |
|  | Unit | EQL | NEPM 2013 Table<br>1A(4) Comm/Ind HSL<br>D GW for Vapour<br>Intrusion, Clay 2-4m | DGV - highly disturbed | Aquatic ecosystems<br>DGV - slightly to<br>moderately disturbed<br>(95%) - freshwater | NHMRC          |            |            |            |            |               |               |            |            |            |            |

Field ID

MW1

MW1

MW1

MW1

MW2

MW2

MW2

MW2

MW3

MW3

MW3

MW3

MW4

MW4

MW4

MW4

MW6

MW6

Location Code

#### Comments

- #1 To obtain F1 subtract the sum of BTEX concentrations from the C6 C10 fraction.
- #2 To obtain F2 subtract napthalene from the >C10 C16 fraction.
- #3 ANZG (2018)
- #4 Derived by NZ NIWA (2013) using ANZECC (2000) methodology. ANZECC (2000) value was withdrawn due to calculation errors.
- #5 ANZG (2018). The more conservative value (Arsenic AsV) out of the available arsenic species was adopted for initial screening purposes.
- #6 ANZG (2018). Adjust DGVs for site-specific hardness using the hardness-dependent algorithm in Warne et al. (2018)
- #7 ANZG (2018). The more conservative value (Chromium CrVI) out of the available chromium species was adopted for initial screening purposes.
- #8 ANZG (2018). Higher species protection level adopted as recommended
- #9 CRWB (2019). Lowest of values for gasoline (C4-C12) and diesel (C8-C21) range hydrocarbons.
- #10 CRWB (2019). Value for diesel (C8-C21) mixture.
- #11 CRWB (2019). Value for diesel (C8-C21) mixture. No value derived for TPH >C21 as not considered soluble; diesel value used for screening.
- #12 ANZG (2018). Unknown species protection level
- #13 ANZG (2018). The more conservative value (Chromium CrIII) out of the available chromium species was adopted for initial screening purposes.
- #14 NHMRC (2008)
- #15 NHMRC (2011) Health. Converted from guideline for nitrate (as nitrate). Multiplied by a factor of x10
- #16 NHMRC (2011) Health. Converted from guideline for nitrite (as nitrite). Multiplied by a factor of x10
- #17 NHMRC (2011) Health. Multiplied by a factor of x10
- #18 NHMRC (2011) Health. Guideline for Cr (VI) conservatively adopted for comparision to total chromium. Speciated analysis should be undertaken where guideline is exceeded. Multiplied by a factor of x10
- #19 USEPA Tap Water RSL (TR=1E-06; THQ=0.1). Multiplied by a factor of x10
- #20 WHO (2008). Lowest derived value for aliphatic and aromatic fractions in this range. Multiplied by a factor of x10
- #21 Lowest derived value for aliphatic and aromatic fractions in this range (90 ug/L). Multiplied by a factor of x10
- #22 NHMRC (2011) Health. Derived as per NHMRC (2011) based on TDI used for NEPM HSL derivation. Multiplied by a factor of x10
- #23 NHMRC (2011) Health. Value is for BaP but applies to TEQ. Multiplied by a factor of x10



## **Appendix C – Community Complaints**



## Annual Review 2022/23 – Redirect Recycling, Wetherill Park

| Complaint<br>No | Category | Date<br>Received | Property | Detail | Follow Up Actions |
|-----------------|----------|------------------|----------|--------|-------------------|
| NIL             | -        | -                | -        | -      | -                 |



## Blank Page